Scaled Prototype of a Redundantly Fed, Gearless PMSM Wind Generator with Tooth Coil Winding and Solid Rotor Yoke

TECHNISCHE UNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung

VDE Antriebssysteme 2021

M.Sc. Nicolas Erd (nerd@ew.tu-darmstadt.de)

Prof. Andreas Binder

(abinder@ew.tu-darmstadt.de)

Institute for Electrical Energy Conversion TU Darmstadt Darmstadt, Germany

Agenda

- Introduction
- FEM Model and Results
- Thermal Simulation
 - Hybrid Model
 - Conductor Repositioning
 - Excess Temperature End Winding
 - Results
- Conclusion

Introduction: Gearless PMSM Wind Generators

Wind Generator

[Siemens Gamesa]

- Outer rotor design: Solid rotor yoke
- Tooth coil winding (q = 2/5)
- Redundancy operation (sectorial stator feeding)

- q = 2/5; 2p = 40; Q = 48 $n_{\rm N} = 60 \text{ min}^{-1} / 120 \text{ min}^{-1}$; $M_{\rm N} = 2800 \text{ Nm}$ Inner water jacket ; form-wound coils
- Stator field harmonics \rightarrow Rotor eddy currents

Agenda

- Introduction
- FEM Model and Results
- Thermal Simulation
 - Hybrid Model
 - Conductor Repositioning
 - Excess Temperature End Winding
 - Results
- Conclusion

Demonstrator: FEM Model and Results

2D *JMAG* Model (dimensions in mm)

Simulation Results for Nominal Operation

Speed $n_{\rm N}$, stator frequency $f_{\rm s}$	60 min ⁻¹ , 20 Hz
Torque M _N	2828 Nm
Mechanical power P_{mech}	17.77 kW
Total losses P _d	2895 W (100 %)
Copper losses $P_{Cu,AC}$	2487 W (86 %)
Stator iron losses $P_{\text{Fe,s}}$	222.7 W (8 %)
Eddy current losses: Magnets P_{mag}	40.1 W (1 %)
Eddy current losses: Rotor yoke $P_{\rm rot}$	145.3 W (5 %)
Stator current $I_{s,1}$	35.01 A
Stator voltage $U_{\rm s,1}$	190.4 V
Efficiency	83.7 %
$\cos(\varphi_1)$	0.74 (ind.)

axial stack length 90 mm

Agenda

- Introduction
- FEM Model and Results
- Thermal Simulation
 - Hybrid Model
 - Conductor Repositioning
 - Excess Temperature End Winding
 - Results
- Conclusion

Thermal Modelling: Motivation and Hybrid Model

- Stator winding temperature? Average and hot spot!
 - Deep slots and round wire winding
 - Inhomogeneous temp. distribution over winding
 - Complex but well known geometry
 - Model: 2D FEM (FEMM)
- Rotor magnet temperature?
 - Rotor losses and convective heat from stator
 - Dominated by convection heat transfer
 - Options:
 - A) Fast analytical HTC calculation and simple thermal network

B) Precise HTC calculation from CFD and network/3D model

One consistent temperature field

Thermal Modelling: Motivation and Hybrid Model

Thermal Modelling: Stator – Cross Sectional 2D FEM

(1)

- (1) Inner water jacket: Dominant transversal heat flow
- 2 Prefabricated orthocyclic Winding: Precise Modelling
- ③ Cross sectional FE-Model (FEMM)
 - + Precision
 - + Modelling effort
 - all axial effects are neglected

Thermal Modelling:

Stator – Cross Sectional 2D FEM: Coupling

- Heat from winding overhang to inner air
 Adjustment of heat generation in copper: _______
- Heat from stator tooth tips to air gap

stator support

Adjustment of heat generation in tooth tip: -----

copper

air

core

tooth tip

Thermal Modelling: Corrective Thermal Network

Thermal Modelling: Assessment of Axial Effects

 $\Phi_{\rm th} = 0$

x

Repositioning of Wire from Turn to Turn

- Additional heat flow path along the wire
- Analytical assessment: Negligible additional heat resistance

Excess Temperature in End Winding

- End winding outside of cooled core
- Assuming thermal insulation
- Analytical 1D bar model: 1 K excess temp. rise

stator iron core

 $l_{\rm fe}/2$

end winding
stator iron core

0

10

x/mm

20

30

40

50

 $\Delta \vartheta \approx 1 \text{ K}$

Thermal Simulation of Nominal Operation: Coupling of Stator and Rotor – Results (I)

- Deep slots \rightarrow inhomogeneous temp. distribution
- Utilization of insulation class 180 (H)

Amb. temp.	Avg. temp. rise coolant	HTC cooling channel	Avg. copper temp. rise	Max. copper temp. rise	Min. copper temp. rise	Avg. stator core temp. rise	Tooth tip temp. rise	Avg. stator support temp. rise
40°C	7 K	2282 W/(m²·K)	100 K	123 K	49 K	64 K	96 K	14 K

Thermal Simulation of Nominal Operation: Coupling of Stator and Rotor – Results (II)

Thermal Simulation of Nominal Operation: Coupling of Stator and Rotor – Results (II)

percentage of total losses ; average temperature rise

Agenda

- Introduction
- FEM Model and Results
- Thermal Simulation
 - Hybrid Model
 - Conductor Repositioning
 - Excess Temperature End Winding
 - Results
- Conclusion

Conclusion

TECHNISCHE UNIVERSITÄT DARMSTADT

- FEM loss results
- Thermal modelling and results
- Discussion of axial side effects
- Deep slots (111 mm) combined with water jacket cooling:
- Copper: 49 K ... 123 K temp. rise
- Magnets: 40 K temp. rise
- Significant heat flow from stator to rotor
- Outlook: Experimental temp. measurements on test bench

Scaled Prototype of a Redundantly Fed, Gearless PMSM Wind Generator with Tooth Coil Winding and Solid Rotor Yoke

Thank you for your attention!

VDE Antriebssysteme 2021 | TU Darmstadt | Institute for Electrical Energy Conversion | Nicolas Erd | 18

Demonstrator: FEM Model and Meshing (I)

2D JMAG Model (dimensions in mm) Analytical rotor yoke eddy current calculation $A = 823 \text{ A}_{\text{eff}}/\text{cm}$; $\kappa_{\text{rot}} = 6.29 \text{ MS/m}$; $\mu_{\text{r,rot}} = 250$ Ø 658 factor $k_{\mathrm{w},\nu}$ winding 0.75Ø 700 0.5+W 0.25Ω 10.x00 0 1004006 N 10 $\frac{\partial}{\partial r} \left| \frac{\partial}{\partial s} \right|$ 2.0 slip: 0 N N -10← 10.5 0^{-1}_{-0} $0^{$ \mathcal{M} 20.2 inaccurate cumulative 400+VØ 400 -U $P_{\nu'}$ 30018.3 200losses j 43.0 x 8.5 100+U +U relative spatial order $\frac{\nu}{p}$ critical harmonic: v/p = -1.4 with s = 2.4

Demonstrator: FEM Model and Meshing (II)

Demonstrator: Nominal Operation: Electromagnetical Simulation

Speed $n_{\rm N}$, stator frequency $f_{\rm s}$	60 min ⁻¹ , 20 Hz
Torque $M_{\rm N}$	2828 Nm
Mechanical power P _{mech}	17.77 kW
Total losses P _d	2895 W (100 %)
Copper losses P _{Cu,AC}	2487 W (86 %)
Stator iron losses $P_{\text{Fe,s}}$	222.7 W (8 %)
Eddy current losses: Magnets P_{mag}	40.1 W (1 %)
Eddy current losses: Rotor yoke P_{rot}	145.3 W (5 %)
Stator current $I_{s,1}$	35.01 A
MTPA: Current angle β'	170°
Stator voltage $U_{\rm s,1}$	190.4 V
Efficiency	83.7 %
$\cos(\varphi_1)$	0.74 (ind.)
Torque ripple	1.2 %

Tab. and phasor diagram: 2D, nonlinear, transient FEM (*JMAG*)

Thermal Modelling: Repositioning of Wire from Turn to Turn

• Wire repositioning adds a thermal path for cooling with $R_{\text{th,ax}} \rightarrow \text{negligible compared to } R_{\text{th,q}}$

$$R_{\text{th,ax}} = \frac{l_{\text{wdg}}}{\lambda_{\text{Cu}} \cdot \frac{\pi}{4} \cdot d_{\text{Cu}}^2} = 325.5 \,\frac{\text{K}}{\text{W}}$$

• Transversal main path for cooling with $R_{\text{th,q}}$

$$R_{\rm th,q} = \frac{1}{\pi \cdot \lambda_{\rm iso} \cdot l_{\rm wdg}} \cdot \ln\left(\frac{d_{\rm Cu,o}}{d_{\rm Cu}} + \sqrt{\left(\frac{d_{\rm Cu,o}}{d_{\rm Cu}}\right)^2 - 1}\right) = 0.85 \,\frac{\rm K}{\rm W}$$

$$\lambda_{iso} = 0.4 \text{ W/(m} \cdot \text{K})$$
 $\lambda_{Cu} = 390 \text{ W/(m} \cdot \text{K})$
 $l_{wdg} = 293 \text{ mm}$ $d_{Cu,o} = 1.8 \text{ mm}$ $d_{Cu} = 1.72 \text{ mm}$

Thermal Modelling: Excess Temperature in End Winding

- End winding not embedded in cool core
- Worst case: Total insulation from surrounding air
- Analytical Calculation from simple 1D bar model

$$\frac{\mathrm{d}^2 \Delta \mathcal{G}(x)}{\mathrm{d}x^2} - \frac{r_{\mathrm{th,ax}}}{r_{\mathrm{th,q}}} \cdot \Delta \mathcal{G}(x) = -r_{\mathrm{th,ax}} \cdot p_{\mathrm{L}}$$

• insignificant excess temperature of end winding $\Delta \vartheta \approx 1 \text{ K}$

Thermal Simulation of Nominal Operation: Coupling of Stator and Rotor – Results (II)

- Rotor losses 186 W
- Heat flux from stator to rotor: 248 W
- Air cooling: 454 W (16%)
- Water cooling:
 2441 W (84%)
- Rotor temp. rise 40 K
- Reserve of 20 K (rotor losses not critical)

