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3. Mathematical Analysis of Air Gap Fields  

 

3.1 Fundamental and Harmonics of Air Gap Fields 

Waves and oscillations are basically different: The amplitude of (periodic) wave changes 

periodically with space and time, whereas in case of an oscillation it changes only with 

time. Therefore, the field distribution in the air gap Bδ(x,t) is a wave, whereas the alternating 

current per phase i(t) is an oscillation.  
 

The “step-like” shape of the graph of the travelling wave Bδ(x,t) in the air gap (Fig. 2.8) 

changes its form periodically (with the period time T/6) as it travels. Only the fundamental 

wave of the travelling field is of interest. This wave has the wavelength 2τp and does NOT 

change its shape as it travels. Therefore, it can be easily used for electromechanical energy 

conversion. The fundamental wave can be determined from Bδ(x,t) by means of the 

FOURIER-analysis. Furthermore, Bδ(x,t) contains harmonic waves with shorter 

wavelengths and smaller amplitudes than the fundamental. These are considered as parasitic 

effects that – generally – only interfere with the main purpose of the electric machine, which 

is the electromechanical energy conversion. The harmonics are also the reason for the change 

of the field distribution as it travels onwards.  
 

a) Rotating Waves, Travelling Waves: 

The fundamental wave has the following mathematical expression 
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a)       b) 
 

Fig. 3.1: Waves of the magnetic field in the air gap: a) fundamental wave of the field distribution of Fig. 2.8 as 

travelling wave, b) standing wave as fundamental of the field distribution of the phase of a winding of Fig. 2.7  

 

At the time t = 0, the fundamental is a cosine function with the maximum value obtained at 

x = 0 (Fig 3.1a). 
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At the time t = T/4 (where T = 1/f ), it is a sine function with the maximum value given at 

x = τp/2. 
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The wave has travelled the distance of τp/2. At a fixed coordinate x = C, the flux density 

oscillates with the frequency f, but with a different phase Cπ/τp. 
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The circumferential speed vsyn of the rotating wave (or, in case of a linear motor, the velocity v 

of the travelling wave) is calculated in a way that an observer who travels with the wave 

always sees a constant phase .2 cstft
x

p

=− π
τ

π
. Therefore, for the observer it is 
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This result was already derived in Chapter 2 in a different way. Accordingly, a wave 

travelling in opposite direction psyn fv τ2−= has the following mathematical expression 
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Example 3.1-1: 

At f = 50 Hz, vsyn in m/s has the same numerical value as the pole pitch in cm.  
 

f = 50 Hz : [ ] [ ]cm
p

sm
synv τ=/  

 

Two-pole turbo generator (2p = 2) used in a thermal power plant: nsyn = 3000/min: 

- bore diameter dsi = 1.2 m 

- pole pitch τp = 1.2π/2 = 1.88 m = 188 cm 

- vsyn = 188 m/s = 676 km/h = circumferential speed of the rotor which rotates 

synchronously with the rotating field (synchronous machine!) 

 

b) Standing Waves: 

The field distribution of a phase supplied with alternating current (e.g. Fig. 2.7) does not 

travel, but “stands” spatially fixed, pulsating with the frequency f during time. The 

FOURIER-fundamental is also a standing, pulsating wave (Fig. 3.1b). 
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This wave does not change the location of its nodes (zeros) and antinodes (maxima), however, 

the amplitude pulsates. At the time t = 0, the maximum at x = 0 has the value 1
ˆ
δB , at t = T/8 

only 2/ˆ
1δB , at t = T/4 zero, at t = T/2 1

ˆ
δB−  etc. 

 

 

3.2 FOURIER-Analysis for Determination of Fundamental and Harmonics 

 

A periodic function V(γ) with period 2π can be described as an infinite sum of sinusoidal 

functions (FOURIER-series):  
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The individual amplitudes of the ordinal numbers  
 

....,3,2,1=ν            (3.4) 
 

are calculated using  
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and the average value is calculated using  
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a) FOURIER-Analysis of the Field of a Fully-Pitched Coil (q = 1): 

According to Fig. 3.2a, the spatial distribution of the magnetic voltage Vc(x) of a winding 

branch with q = 1 coils per pole and phase is – independently of the time dependence of the 

coil current ic – a rectangular function. In case of a two-layer winding, each slot provides the 

“concentrated” slot ampere-turns ΘQ = 2Ncic. The circumferential coordinate x is expressed by 

the circumferential angle γ  
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At x = 2τp, the circumferential angle is 2π. In the case of a two-pole machine, this equals the 

circumferential angle 2π in “mechanical degrees”. However, in the case of a four-pole 

machine, it corresponds only to a circumferential angle of π in “mechanical degrees” etc. 

Hence, the circumferential angle γ is counted in “electric degrees”. Generally, 2π “electric 

degrees” equal 2π/p “mechanical degrees”. 

 

As the negative and the positive areas of the graph Vc(γ) have the same magnitude, Vc,0 is zero 

according to (3.6): The air gap field does not contain a constant component, so no uni-

polar flux density occurs. If the position of γ = 0 is chosen as shown in Fig. 3.2a, Vc(γ) is an 

“even” function, and it is: 

 

)()( γγ −= cc VV           (3.8) 

 

Combining (3.8) and (3.5) shows that 0ˆ
,, =bcV ν  (Please verify by yourself!).  

 

Result: 

If the FOURIER-analysis of an even function is done, the FOURIER-sum contains only 

cosine-functions.  
 

Furthermore, the field graph of Fig. 3.2 is symmetrical to the abscissa: 
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a)                       b) 
 

Fig. 3.2: a) magnetic voltage Vc(x) of a series of fully-pitched, current-carrying coils, b) fundamental ν = 1 and 

harmonics ν = 3, 5, 7 as well as their sum  
 

Combining (3.9) and (3.5) gives for ...,3,2,1=ν : 
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Using the symmetry to the abscissa, the second integral gives: 
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Thus, in the case of even ordinal numbers, the first and the second integral cancel each other:  
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It remains: 
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Result: 
Graphs such as field distributions symmetrical to the abscissa only have harmonics with odd 

ordinal numbers. 
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Ultimately, the FOURIER-analysis of the rectangular function results in (Please verify by 

yourself!): 
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As the factor sin(νπ/2) always has the absolute value 1, the amplitudes of the harmonics 

decrease with 1/ν. The finite FOURIER-sum up to the 7
th

 harmonic describes the rectangular 

distribution relatively well (Fig. 3.2b). 

 

b) FOURIER-Analysis of the Field of Short-Pitched Coils (q = 1): 

 

 
 

Fig. 3.3: Magnetic voltage Vc(x) of a series of short-pitched, current-carrying coils  
 

If the coils are short-pitched, Vc(x) changes as shown in Fig. 3.3. The corresponding 

calculation of the FOURIER-amplitudes is (Please verify by yourself!): 
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When compared with fully-pitched coils, the absolute value of the amplitudes is reduced by 

the “pitch factor” kp,νννν. 
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In the particular case W = τp (“fully-pitched”), (3.16) becomes (3.15). 

 

c) FOURIER-Analysis of the Field of Fully-Pitched Coil Groups (q > 1): 

Fig. 3.4  shows the distribution of the magnetic voltage of a fully-pitched coil group for q = 2. 

The FOURIER-analysis of the distribution of the magnetic voltage Vgr(γ) is 
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where stance between two adjacent slots of τQ = τp/(mq) was considered. When comparing 

(3.18) with (3.15), the amplitudes are 

- larger by the factor q, because the number of ampere-turns per slot increases by a factor q,  

- but on the other hand they are reduced by the “distribution factor” kd,ν.  
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In the particular case q = 1 (3.18) becomes (3. 15). 

 

 
 

Fig. 3.4: Magnetic voltage Vgr(x) of a series of fully-pitched, current-carrying coil groups  

(example: q = 2; therefore amplitude qΘQ/2 = Θ Q) 

 

With the number of windings per phase N and the current per coil ic expressed by the current 

per phase i=a.ic, the ampere-turns can be expressed as follows:  
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Of course, the current per coil and the current per phase are the same in the particular case of 

a series connection of all coils (a = 1). Using (3.20), the amplitudes of (3.18) become: 
 

νν
νπ

νπ
,,

2
sin

4

2
ˆ

dgr k
p

i
NV ⋅








⋅⋅⋅=                   (3.21) 

 

d) FOURIER-Analysis of the Field of a Short-Pitched Winding Branch (q > 1, W/τp < 1): 

In the general case of a series of short-pitched coil groups, the expression sin(νπ/2) in (3.21) 

has to be replaced by the pitch factor. Thereby, the FOURIER-analysis of the graph Vph(γ) of a 

winding branch is obtained: 
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Result: 

The FOURIER-analysis of the magnetic voltage distribution Vph(γ,t), hence the distribution of 

the magnetic flux density Bδ(x,t) of an individual winding branch with the number of turns N, 

carrying the current )cos(2 tIi ω⋅⋅= , results in equations (3.23) and (3.24). The 

distribution of the magnetic voltage is given by the sum of standing, pulsating harmonic 

waves as “alternating fields”. 
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The product of pitch and distribution factor is called “winding factor” kw,ν.  
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ννν ,,, dpw kkk ⋅=  (3.25) 

 

Example 3.2-1: 

Pitch, distribution and winding factors of three frequently used three-phase windings A, B, C 

for selected ordinal numbers:  
 A B C 

 q = 1, W/τp = 2/3  q  = 2, W/τp = 5/6 q = 3, W/τp = 7/9 

 Q/p = 6 Q/p = 12 Q/p = 18 

ν      kp,ν          kd,ν          kw,ν    kp,ν          kd,ν          kw,ν    kp,ν        kd,ν        kw,ν 

1      0.866        1         0.866  0.966      0.966      0.933   0.940     0.960    0.902 

5     -0.866        1        -0.866  0.259      0.259      0.067  -0.174     0.218   -0.038 

7      0.866        1         0.866  0.259     -0.259     -0.067   0.766    -0.177   -0.136 

11     -0.866        1        -0.866  0.966     -0.966     -0.933   0.766    -0.177   -0.136 

13      0.866        1         0.866 -0.966     -0.966      0.933  -0.174     0.218   -0.038 

17     -0.866        1        -0.866 -0.259     -0.259      0.067   0.940     0.960     0.902 

19      0.866        1         0.866 -0.259      0.259     -0.067  -0.940     0.960   -0.902 
Table 3.1: Pitch, distribution and winding factors of short-pitched three-phase windings with 6, 12 and 18 slots 

per pole pair 
 

The table shows that, because of the sine function, the winding factors periodically have the 

same magnitude also at bigger ν (even at q > 1) as at ordinal number ν = 1.  

 

e) FOURIER-Analysis of the Field of a Three-Phase Winding: 

The standing, pulsating distribution of the magnetic voltage per phase is expressed for all 

three, spatially by 2τp/3 distributed phases, U, V, W individually for each ordinal number ν. 

Thereby, all phases are supplied with three sinusoidal alternating currents with T/3 phase 

displacement.  
 

)cos()cos(ˆ),( , tVtV phU ωνγγ νν ⋅⋅=  (3.26) 

)3/2cos())3/2(cos(ˆ),( , πωπγνγ νν −⋅−⋅= tVtV phV  (3.27) 

)3/4cos())3/4(cos(ˆ),( , πωπγνγ νν −⋅−⋅= tVtV phW  (3.28) 

 

The standing, pulsating waves (3.26) – (3.28) can be decomposed into a positive and a nega-

tive - sequence rotating field, using the trigonometric law  
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In the following, the sum 
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is expressed in detail for ν = 1: 
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Using the correlation  
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the first three addends (namely the negative - sequence waves) of the sum 

),(),(),(),( 1111 tVtVtVtV WVU γγγγ ++=  cancel each other, whereas the second three addends 

(the positive - sequence waves !) add to each other to become the resultant rotating field that 

has 1.5-times the amplitude when compared with the standing oscillating fields per phase: 
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Using δµδ /0VB = , the fundamental of the rotating field (as given in (3.1)) is obtained  
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In the same way, the sum for ν > 1 is calculated, resulting in 
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Note: 

The sum of the three phases is always zero for ordinal numbers ν that are multiples of three. 

The three positive-sequence and negative-sequence rotating waves cancel each other. 
 

0),(),(),(),(:...,21,15,9,3 =++== tVtVtVtV WVU γγγγν νννν              (3.39) 

 

For ν = 7, 13, 19, ..., the three negative-sequence rotating waves cancel each other, as in the 

case of the fundamental, whereas the three positive-sequence rotating waves add to each 

other, thereby generating the field of the POSITIVE - sequence harmonics that travel in the 

direction of the fundamental field.  
 

For ν = 5, 11, 17, ...., the three positive-sequence rotating waves cancel each other, whereas 

the three negative-sequence rotating waves add to each other, thereby generating the 

NEGATIVE -sequence field.  
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Result: 

A three-phase winding for rotating fields that is supplied by a symmetrical three-phase system 

generates a step-like distribution of the m.m.f. V(x,t), which is decomposed into a fundamental 

and harmonic waves. Only odd ordinal numbers ν = 1, 5, 7, 11, 13, 17, 19, ... occur. 
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  ν = 1, -5, 7, -11, 13, -17,... (3.41) 
  

The ordinal numbers used in (3.40) are signed (3.41) to label the direction of rotation – 

positive or negative – of the waves. The sign of the ordinal number does not influence the 

expression kw,ν/ν, because the signs of numerator and denominator cancel each other. The 

general number of phases m is used in (3.40) (here: m = 3), because the calculations are also 

true for every m-phase winding which is supplied by an m-phase current system.  
 

The ordinal numbers can be determined using (3.42): 
 

...,3,2,1,021 ±±±=+= gmgν  ,         (g: integer number) (3.42) 

 

Example 3.2-2: 

Ordinal numbers at m = 3: gg 61321 +=⋅⋅+=ν  

g 0 -1 1 -2 2 ... 

ν 1 -5 7 -11 13 ... 

 

The speed of rotation of the harmonics decreases with 1/v: 

ν

τ
ν

p
syn fv 2, =  (3.43) 

 

The amplitudes decrease with kw,v/v, which is a stronger reduction than 1/v, because it is 

1, <νwk . The frequency of the harmonics is consistently the stator frequency f . It is the same 

for all harmonics. 

 

Example 3.2-3: 

Amplitude spectrum 11
ˆ/ˆˆ/ˆ VVBB νδδν = for three different windings A, B, C: 

 A B C 

 q = 1, W/τp = 2/3 q = 2, W/τp = 5/6 q = 3, W/τp = 7/9 

 Q/p = 6 Q/p = 12 Q/p = 18 

ν 
1

ˆ/ˆ
δδν BB     (%) 1

ˆ/ˆ
δδν BB     (%) 1

ˆ/ˆ
δδν BB     (%) 

1 100 100 100 

-5 -20 1.4 -0.8 

7 14.3 -1.0 -2.2 

-11 -9.1 -9.1 -1.4 

13 7.7 7.7 -0.3 

-17 -5.6 -0.4 5.9 

19 5.3 0.38 -5.3 
Table 3.2: Relative field amplitudes inside the air gap for short-pitched three-phase windings with 6, 12 and 18 

slots per pole pair 
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Winding A:  

2/3-pitch, number of slots per pole and phase q = 1: The amplitudes of the harmonics are large 

and decrease only with 1/ν. At q = 1 pitching affects fundamental and harmonic likewise.  
 

Winding B:  

5/6-pitch, number of slots per pole and phase q = 2: The 5
th

 and 7
th

 harmonics are strongly 

reduced, as well as the 17
th

, 19
th

 due to periodicity of the winding factor.  
 

Winding C:  

7/9-pitch, number of slots per pole and phase q = 3: Due to the finer slotting when compared 

with q = 2, the 11
th

 and the 13
th

 harmonics are also strongly reduced. 

 

Result: 
Short-pitching and finer slotting lead to a significant reduction of the harmonics and result in 

a step-like field distribution that approaches the ideal sinusoidal shape.  

 

f) Harmonic Waves Due to Slotting ("slot harmonics"): 

It is obvious in Tab. 3.2 that the amplitudes of the harmonics with ordinal numbers 

 

g
p

Q
Q += 1ν ,      ,...3,2,1 ±±±=g  (3.44) 

 

are increased. This is due to the fact that the winding factor of these harmonics is the same as 

of the fundamental (see Example 3.2-1).  

 

Example 3.2-4: 

Ordinal numbers of harmonics due to slotting: 

a) Q/p = 12 : gQ 121+=ν = –11, 13, -23, 25 etc.,  

b) Q/p = 18: gQ 181+=ν = –17, 19, -35, 37 etc. (compare with Tab. 3.2).  

 

The longest wavelength of these slot harmonics is about the slot pitch: These harmonics are 

generated by the discrete distribution of ampere-turns in the slots. Graphically, this 

corresponds to the steps of the graph V(x). In some cases, these harmonics can cause 

unpleasant magnetic sounds (“siren sounds”) due to vibration of the stator iron stack and 

remarkable losses due to eddy currents in massive conducting parts of the electric machine. 

They are to be reduced by further means (see lecture: “Motor Development for Electric Drive 

Systems”).  

 

 

3.3 FOURIER-Analysis of the Field of a Squirrel-Cage Winding 
 

Squirrel-cage induction motors have a squirrel-cage winding in the rotor instead of a coil-

winding. This cage-winding consists of Qr conductive bars (copper, aluminium) which are 

arranged in Qr equally spaced slots that are shorted by a conductive ring at each front side 

(Fig. 3.5a). At motor operation, a system of voltages with frequency fr is induced in this 

squirrel-cage, thereby generating a symmetrical system of rotating currents – a sinusoidal 

current in each bar where each current has a phase shift towards the current of the 

neighbouring bar. Therefore, each bar is an individual phase, resulting in the number of 

phases Qr. Hence, the phase-current is the current in the bar. Each bar is half of a winding. 

Therefore, the number of turns per winding per phase is Nr = ½ and the pitch and distribution 

factor of this type of winding are 1. With µ being the ordinal number of the harmonics of the 
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field distribution of the squirrel-cage winding, the FOURIER-analysis of the step-like field  

becomes with  
 

µνν →→→→→ ,,1,,2/1 , barwr IIkQmN                (3.45) 

 

 in analogy to (3.40): 
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∞
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with the ordinal numbers 
 

 ,...2,1,01 ±±=+= rr
r gg

p

Q
µ  (3.47) 

 

Example 3.3-1: 

Squirrel-cage winding with Qr = 28 bars, 2p = 4 (Fig. 3.5b):  

- The system of bar currents is periodic (period: Qr/p = 14 bars). Hence, 14 different 

currents exist in the bars. Each two currents have of opposite sign respectively, e.g. 1 and 

8, 2 and 9 etc. 

- The phase displacement of the bar currents of two neighbouring bars equals the slot angle 

αQ = 2πp/Qr = π/7. 

Explanatory statement: A four-pole field wave of the stator induces in bars 1 and 8 currents of 

opposite sign (phase displacement π). Accordingly, the phase shift of the bar currents in bars 

2 to 7 has to be 1/7 of π. 

 

Fig. 3.6 shows the corresponding distribution of the m.m.f. for the time t = 0. At this time, the 

bar current in bar 1 has its maximum value. The bar current in bar 2 is smaller about the factor 

cosαQ = 0.9, the current in bar 3 about the factor cos(2αQ) = 0.62 etc.. The approximation of 

the field distribution towards the aspired ideal sinusoidal shape because of the high number of 

phases is clearly to see. According to (3.44) and (3.47), all harmonics are harmonics due to 

the slotting, because the winding factors of the fundamental and of the harmonics are the 

same, which is always 1. 

 
 

Fig. 3.5: a) Schematic sketch of a squirrel-cage winding, b) symmetrical system of bar currents of a squirrel-cage 

winding with Qr/p = 14 
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Fig. 3.6: Distribution of the magnetic voltage at the circumference of a machine for a squirrel-cage winding with 

Qr/p = 14 for the time t = 0 

 

Exercise: Let the field of Fig. 3.6 “travel” ! 

You can generate the travelling of the field by drawing the distribution V(x,t) for a different 

time t*. At this time, the current in bar 1 is about the factor cos(ωrt*) smaller, the current in 

bar 2 about the factor cos(ωrt* + αQ), the current in bar 3 about the factor cos(ωrt* + 2αQ) etc. 

(Exercise: Choose ωrt* = π/7 !) 

 

 

3.4 FOURIER-Analysis of DC-Excited Rotating Fields 

 

Fig. 3.7 shows the air gap field Hδ of a two-pole, electrically excited rotor of a salient-pole 

synchronous machine. No current flows in the three-phase winding of the stator (no-load 

condition). Therefore, this winding is not shown. The openings of the stator slots are 

neglected. The air gap field is only excited by the ampere-turns of the rotor NfPol
.
If, where NfPol 

is the number of turns per pole. The exciting coils of the north and south pole are – as general 

done – electrically connected in series. However, the air gap δδδδ(x) width is not constant, 

because of the shape of the pole shoe and the inter-pole gap. Hence it increases towards the 

inter-pole gaps. It is a function of the circumferential coordinate x. 
 

 
 

Fig. 3.7: Air gap field of a two-pole synchronous machine at no-load without influence of stator slotting 

 

The iron is assumed to be of infinite permeability ( ∞→Feµ ). Therefore, the magnetic field in 

the iron parts HFe is zero. The radial component Bδ of the air gap field is calculated using 

AMPERE’s circuital law.  
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Here, the integration loop C equals a closed loop of a field line of the no-load field B
r

. As 

north and south pole do have the same geometry, the function of the field distribution (3.49) is 

symmetrical to the abscissa )()( πγγ δδ +−= BB  (Fig. 3.8). Therefore, the FOURIER-cosine-

series consists only of harmonics with odd ordinal numbers. 

 

∑
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=
,...5,3,1

)cos(ˆ)(
µ

δµδ µγγ BB  (3.50) 

 

 
 

Fig. 3.8: Field distribution Bδ (x) symmetrical to the abscissa along the circumferential coordinate x at variable 

air gap δ(x) 

 

The field distribution is given by the function of the air gap δ(x), and hence by the shape of 

the pole shoe. The field distribution is not sinusoidal as desired, due to the inter-pole gap. This 

results in amplitudes of the harmonics δµB̂  for µµµµ > 1 different from zero (In this case, also 

ordinal numbers exist, that are multiples of 3 !).   

 

The field distribution of Fig. 3.8 – excited by the dc-current If – is a dc-field when seen from 

the rotor. As the rotor rotates with constant mechanical angular speed Ωm = 2πn = 2vm/dsi, it 

is a rotating field when seen from the stator winding. Here, vm is the circumferential speed of 

the field in the stator bore dsi. The circumferential angle γr in the coordinate system of the 

rotor (measured in electric degrees) increases – seen from the circumferential angel γs in the 

coordinate system of the stator – by the angle of rotation )(tγ . With 

pdtddtd mm /)/(/ γγΩ == , it is 

 

tpdtpdtdtdtt mr

t

mr

t

rrs ⋅⋅+=⋅⋅+=⋅+=+= ∫∫ ΩγΩγγγγγγ
00

/)()(    . (3.51) 

 

Result: 
The field waves that are seen as stationary from the rotor are rotating field waves when seen 

from the stator.  
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At each point x along the circumference of the stator, these field waves generate a change of 

the magnetic flux density with the frequency 

   

np
p

f m ⋅⋅=== µ
π

Ωµ

π

ωµ
µ

22
      . (3.53) 

 

This means:  

As all rotating waves Bµ pass the stator with the same velocity vm, the frequency of theµth
    

harmonic is µ-times as large as the fundamental with µ = 1. These harmonics induce voltages 

with higher frequencies in addition to the desired sinusoidal voltage of the fundamental. 

These harmonics may e.g. interfere with neighbouring telephone circuits via electromagnetic 

interference remarkably. Therefore, the harmonics of the rotor have to be kept as small as 

possible. 

 

 
 

Fig. 3.9: View of the poles of the rotor of a salient-pole synchronous machine 

 


