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4. Voltage Induction in Three-Phase Machines  
 

4.1 FARADAY´s Law (1831) 
 

a) Stationary Induction: 

The second law of MAXWELL 
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describes the voltage induction in windings. Applying STOKES´s law of integrals 
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for a conductor loop (closed loop C in Fig. 4.1a) that encloses the area A, equation (4.1) is 

converted from differential into integral form.  
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The electrically induced voltage along the loop C (integral of the electric field strength) is 

called ui. The partial derivation t/ ∂∂ can be put in front of the integral. This is possible with a 

constant area A, hence no dependence A of t, which is only possible with a stationary 

conductor loop is considered:  
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In equation (4.3), Φ is the magnetic flux penetrating the area A. According to the law of 

induction for stationary current loops (4.3), it is: 

The electric curl field WiE
r

 and the associated induced voltage ui is induced by the negative 

variation with time of the magnetic flux Φ enclosed by the “conductor loop” C. Therefore, the 

direction of WiE
r

 is to the left of the direction of t/B ∂∂
r

 (left-hand-rule). As the current loop 

is stationary, this phenomenon is called “stationary induction”. 

 

It is important to distinguish carefully between the electric curl field (eddy field) EWi and the 

source field EQu. According to (4.1), the electrically induced field is a curl field WiE
r

, because 

it is calculated by a “curl” operation. The field lines are closed loops (subscript “wi”, 

Fig. 4.1a). This field causes a displacement of electric charges along the conductor loop C, 

which is open at the terminals 1 and 2, in a way that terminal 1 becomes negatively, and 

terminal 2 becomes positively charged for a positive t∂∂Φ . These charges (charge density ρ) 

generate an electric source field QuE
r

 according to MAXWELL’s 4
th

 law 0ερ /Ediv Qu = . QuE
r

 

can be measured between the terminals 1 and 2.  

 

b) Motion Induction: 

If the current loop C moves with the velocity v in the magnetic field, the flux passing the area 

A may also change, even in the case of  B being CONSTANT with time (B = const.). Two 

cases can be distinguished: 

1. The shape of the loop changes, and so does the area A (Fig. 4.1b). 
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2. The loop moves from a region with flux density B1 to  a region with a spatial different 

flux density B2 ≠ B1. 

In both cases, the moving of the loop within a magnetic field which is constant with time 

causes a changing of the flux across the area enclosed by the loop C. According to (4.3), a 

voltage ui is induced. 
 

In both cases 1. and 2., the area A is not constant, because the coordinates (x,y,z) of the loop 

C(x,y,z) change with time: x(t), y(t), z(t). If the derivation with respect to time is put IN 

FRONT of the integral (as in (4.3)), the change of the area A has to be taken into account 

(product rule!). As   
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is the vector of the velocity of each path element sd
r

 of the conductor loop C, we get 

according to vector analysis  
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As B is constant, it is 0=∂∂ t/B
r

. Combining (4.4) and (4.3), we get  
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The law of induction for moving current loops (4.5) signifies: 

Moving of a conductor loop C with the velocity v
r

 in the field B, which is constant with time, 

generates an electrical field density induced by the motion BvEb

rrr
×= . The integral along 

the loop C gives the motion induced voltage ui. As the conduction loop moves, this 

phenomenon is called “motion induction”. 

 

c) General Law of Induction: 

- If a current loop C moves with the velocity v in the magnetic field B, where 

- B changes with time, 

stationary and motional induction occur at the same time. 
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The general law of induction (4.6) signifies: 

Every variation of the flux ΦΦΦΦ through the area A that is enclosed by the conductor loop 

C induces a voltage ui; this induced voltage equals the negative rate of change with time 

of the linked flux. 
 

If the loop has N turns in series, ui is N-times larger: dt/dNui Φ⋅−= .  With the flux linkage 
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the most general expression of the law of induction is obtained: 
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a)       b)  
 

Fig. 4.1: Voltage induction in a current loop C: a) stationary current loop, but variation of the magnetic field 

with time (stationary induction). b) the current loop moves within a magnetic field that is constant with time 

(motion induction) 

 

d) Current Loop at Zero Current: 

At open terminals 1 and 2, no current may flow within the current loop C. Hence, the resultant 

force on the charge carriers (with charge Q) is zero. 
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As the terminals 1 and 2 are immediate neighbours, the integral along the path C from 1 to 2 

equals the integral of the closed loop: ∫ ∫ ⋅=⋅
2
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. Therefore, the induced voltage is  
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Accordingly, the voltage that is measurable from terminal 2 to terminal 1  
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equals the induced voltage.  
 

e) Current Loop at Load: 

If an external, ideal voltage source u (without any internal resistance) is connected, a current i 

flows. This current is both driven by the induced voltage and by the external voltage source 

and is only limited by the internal resistance R of the loop. 
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If the current i that excites the magnetic field B flows in the loop itself, the factor between the 

flux linkage and the magnetic field is called self inductance L. 
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If a second current i2 flows in a second loop and excites the field, which is linked to the 

considered (first) loop, the factor is called mutual inductance M  
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As a result, (4.11) can be rewritten to give the common expression for an inductive circuit: 
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Example 4.1-1: 

Shorted stationary coil in a time variant external field B: 

The terminals 1 and 2 of loop C of Fig. 4.1a are connected, hence, they are shorted (Fig. 

4.2a). The time variant external field B causes an increase of the field from the bottom up 

through the loop area A and induces an eddy field EWi. The eddy field EWi which is connected 

in left hand sense with the direction of change of B induces a short-circuit current i flowing 

in left hand sense. According to AMPERE’s law, this current excites a field Be that is linked 

to the current i in right hand sense (right-hand-rule). Hence Be acts against the cause of the 

induced voltage which is the variation of the magnetic flux density with time t/B ∂∂ . So, the 

field Be “tries” to retard the changing of the external field B.“LENZ’ law”: The current 

that flows as a result of the induced voltage ui generates a self-field Be, which acts against 

the cause of ui (the change of the field B). 
 

   
 

Fig. 4.2a: The voltage ui that is induced Fig. 4.2b: FARADAY´s disc: rotating copper disc in a magnetic 

in a shorted loop due to variation of the field 

magnetic flux density causes a current i.  

The self-field of i Be acts against the  

variation of the field. 
 

Example 4.1-2: FARADAY´s disc (Fig. 4.2b): 

FARADAY´s disc is a simple model for a unipolar machine which generates a perfectly 

constant voltage (dc voltage) without use of any electric or mechanical rectifier. It is a con-

ducting disc (e.g. copper) that is rotating together with a conducting shaft (bearing not 

shown). The induced voltage due to the disc motion in the constant field B is measured 

between two sliding contacts, one at the shaft and one at the outer edge of the wheel. Further, 

the bar magnet is arranged co-axially with the disc. It may rotate independently of the disc.  
 

Case a)  

If the disc rotates with angular speed Ωs and the magnet is at rest (Ωm = 0), motion induction 

occurs, because the conductor (the disc) moves within the field. The magnet itself does not 

change its field: B = const. NO stationary induction does occur: 0=∂∂ t/B . The velocity  
 

srv Ω⋅=                      (4.15) 
 

of each point of the disc at distance r of the axis of rotation is perpendicular to the vector of 

the radius (circumferential direction). The vector of the magnetic flux density B
r

 leaves the 
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disc in axial perpendicular direction. Accordingly, it is perpendicular to the vector of the 

velocity v
r

. Hence, the electric field due to the motion   
 

rb eBvBxvE
rrrr
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is oriented in radial direction pointing outwards ( re
r

: unity vector in radial direction). The 

outer edge of the disc becomes positively charged. A source field EQu that has the same 

magnitude but is oriented in the opposite direction (inwardly) is generated. The path integral 

of EQu can be measured as dc-voltage at the sliding contacts. 
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If B is constant along the radius B(r) = B, (4.18) can be derived from (4.17): 
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Result: 
The induced voltage increases proportionally with the frequency of rotation of the disc and 

with the magnetic flux density. 
 

Case b)  

If the disc is at rest (Ωs = 0) and the magnet rotates (Ωm > 0), NO voltage proportional to BΩm 

is induced. NO change of the magnetic flux enclosed by the disc occurs, because the magnetic 

field is constant with time and, because of the rotational symmetry of the bar magnet,  it is 

also constant along the circumference angle γ. Therefore, as long as the disc is at rest, no 

voltage is induced, independently from the rotational speed of the magnet (Ωs = 0 and 

Ωm > 0). The reason for a misapprehension of the occurrence of an induced voltage 

proportional to BΩm is the wrong interpretation of the flux lines (flux tubes) as material 

entities with an observable relative motion,  instead of the right interpretation as a 

mathematical model, which indicate the magnitude and the direction of the field. 
 

f) Relevance of the Law of Induction: 

The law of induction is of utmost importance for the functioning of electric machines and 

transformers. 
 

Stationary induction Motion induction 

field of B variable with time field B constant with time 

coil at rest coil moves with velocity v 

dt/dui Ψ−=  

∫ ⋅=∂−∂= sdEt/u Wii

rr
Ψ  ( ) ∫∫ ⋅=⋅×= sdEsdBvu bi

rrrrr
 

application of the law of induction: 

• transformer coils 

• stator windings of three-phase machines 

• rotating armature winding of dc-

machines 

transformer induction rotary induction 
Table 4.1: Relevance of the law of induction in electric machines and transformers 
 

Example 4.1-3: 

The general law of induction can ALWAYS be applied ! 
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This is shown with a simple linear machine (Fig. 4.3):  

One coil (number of turns Nc, coil width τ) moves with the velocity v in the air gap between 

an iron yoke and permanent magnets (pole sequence N-S-N-S, pole width bp = τ ). The air gap 

field Bδ is homogeneously positive or negative, depending on the polarity of the magnet. 
 

 
 

Fig. 4.3: Voltage induction in a coil (coil width τ, velocity v) that moves in a magnetic field Bδ that is constant 

with time. 
 

a) Calculation of ui using the law of motion induction: 

The induction at stand-still is zero, because the field of the permanent magnets does not 

change. Voltage can only be induced by motion. The loop C becomes the length 2l, because 

the face ends of the coil are outside of the area with a magnetic field. As the directions of 

velocity, field and orientation of the coil sides are perpendicular to each other, it is: 
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b) Calculation of ui using the general law of induction: 

The flux linkage Ψ changes due to the motion of the coil within the magnetic field, because 

the co-ordinate of the location x = vt changes with time. 

Flux linked with the coil: ( )[ ] )x(lBxBBxlAdB

A

2−=−−⋅=⋅= ∫ ττΦ δδδ

rr
 

Flux linkage of the coil: ( ) )tv(lBN)x(lBN)t(Nt ccc ⋅⋅−=−== 22 ττΦΨ δδ  
 

Application of the general law of induction: 
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Results: 
Equation (4.20) and (4.19) are equal. Explanation: An observer that moves with the coil 

would not be able to assert the movement of the coil. He would only realise a change of the 

flux linkage without knowing the reason for it. 
 

The decomposition in stationary and motion induction depends on the position of the 

observer. Ultimately, only the total variation of the flux linkage is important for the 

calculation of the induced voltage.  
 

 

4.2 Voltage Induction in a Stator Coil 

 
a) Voltage Induction due to the Fundamental of the Field: 

Fig. 4.4 shows a stationary, full-pitched coil that is inserted into the stator slots (length per 

slot: l). We assume, the field outside the area of the air gap as zero. 
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Fig. 4.4: A sinusoidal travelling wave induces a  Fig. 4.5: Flux of a pole with sinusoidal distributed flux 

stationary coil, pW τ=     density, interpreted as area beneath the field distribution 

 

Accordingly, no additional flux is enclosed by the end connections of the coil. The 

fundamental of the radial component of the flux density as described in Chapter 3 
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generates an alternating flux in the coil 

 

∫
−

⋅==

2

2

11

2
/

/

p

p

p

tcosB̂ldx)t,x(Bl)t(

τ

τ

δδ ωτ
π

Φ . (4.22) 

 

The amplitude of this flux is (Fig. 4.5) 

 

1

2
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π
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It pulsates with the frequency f = ω/(2π) (Fig. 4.5). The flux linkage pulsates with the same 

frequency 

 

tcosN)t( ccc ωΦΨ ⋅= , (4.24) 

 

thereby inducing a sinusoidal, alternating voltage in the coil: 
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The amplitude of this voltage is 

 

1

2
2 δτ

π
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b) Voltage Induction due to Rotating Fields of Harmonics: 

The field that is induced by the excited rotor (rotating with speed n) of a synchronous genera-

tor is expressed as FOURIER-sum of the individual sinusoidal field waves (see Chapter 3). 
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Generally, the inducing field waves are expressed with the ordinal numbers: the 

fundamental: µ = 1, and of the harmonics: µ > 1. 

 

)t
x

cos(B̂)t,x(B
p

, ⋅⋅−= ωµ
τ

πµ
δµµδ  ,  µ  = 1, 3, 5, 7, ...   . (4.27) 

 

where pn ⋅⋅= πω 2 . The alternating flux that is inducing a stationary coil in the stator is  
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with the amplitude 
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The amplitude of the flux of the harmonics is by )B̂/(B̂ 1δδµ µ ⋅  smaller than the flux of the 

fundamental, but it pulsates with a significantly higher frequency fµ = µω/(2π). The 

expression 2/)1()1()2/sin( −−= µµπ  (with µ = 1, 3, 5, ...) values always only 1, -1, 1, -1, ... . 

Only the sign changes, but not the amplitude. The voltage induced in a single stationary coil 

in the stator is,  
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The particular case µ = 1 equals (4.25), (4.26). 

 

Result: 

Not only the “useful” fundamental voltage with the frequency pnf ⋅= , but also additional, 

harmonic voltages are induced in the stator coils of a “real” machine. The amplitudes of 

these harmonics voltages are smaller than the amplitude of the “useful” fundamental, yet, the 

frequencies are higher. 

 

Example 4.2-1: 

12-pole synchronous generator: n = 500/min, 2p = 12, 50660500 =⋅=⋅= )/(pnf Hz 

stator coil data: Nc = 2, W = τp = 0.5 m, l = 1 m 

Induced voltage at amplitudes of the rotor field that is inducing the coil according to Table 

4.2:  
 

µ 
δµB̂  fµ Φcµ 2/ÛU c,ic,i µµ =  1c,ic,i U/U µ  

- T Hz mWb V % 

1 0.9 50 286.5 127.2 100 

3 0.15 150 -15.9 -21.2 16.7 

5 0.05 250 3.3 7.1 5.6 

7 0.05 350 -2.3 -7.1 5.6 
Table 4.2: Example of voltage induction in a stator winding due to fundamental and harmonic rotor fields 
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4.3 Voltage Induction in a Three-Phase Winding 
 

            
 

Fig. 4.6: Induction of a short-pitched coil of arbitrary  Fig. 4.7: Three fully-pitched, series-connected  

span W due to a magnetic field. The figure shows a coil  coils form a coil group. The voltage per group Ugr  

group with q = 3 coils. is determined by means of complex phasors 

  of alternating voltages. 

A poly-phase winding consists of m phases, where each phase is a series connection (or 

parallel connection) of winding branches built from individual coils. Generally, the coils are 

short-pitched in case of a two-layer winding, hence, the coil span W is smaller than the pole 

pitch. 

 

a) Voltage Induction in Short-Pitched Coils: 

In Fig. 4.6, the short-pitching is indicated by πτβ )/W( p= . The flux linkage of a short-

pitched coil is by the pitch factor kp,µ smaller than the flux linkage of a fully-pitched coil, as 

equation (4.31) shows when compared with equation (4.28).  
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b) Voltage Induction in a Coil Group: 

How big is the induced voltage of a coil group consisting of q fully-pitched coils that are – 

series-connected – arranged in q neighbouring slots (slot pitch τQ)? The fundamental and the 

harmonic waves induce sinusoidal alternating voltages in each coil according to (4.30). The 

individual coil voltages of the fundamental are phase shifted by the slot angle (Fig. 4.6 and 

Fig. 4.7) 

 

mq
Q

2

2π
α =  (4.33) 

 

At the time of maximum flux linkage of the first coil of the coil group, when the maximum of 

the field of the sinusoidal fundamental is in the centre of the coil, this maximum is at one slot 

pitch τQ distance from the centre of the second coil. After the time t = τQ/v the maximum of 
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the field wave has moved to in the centre of the second coil. With v = 2fτp and τp/τQ = mq (e.g. 

q = 3, m = 3: τp/τQ = 9 slots per pole), the time t becomes t = 1/(2fmq). This equals a phase 

shift of  
 

)mq/()fmq/(f)fmq/(tQ 22222 ππωωα ===⋅= . (4.34) 

 

In the case of voltage induction by a µth
 harmonic, the phase difference is by the factor µ 

larger, as the frequency of induction is µ times as large. 
 

)mq/(t,Q 22πµωµα µ ⋅=⋅⋅=  (4.35) 

 

This can be understood as follows: The wave length of the µth
 harmonic is by the factor 1/µ 

smaller than the wave length of the fundamental. Therefore, the distance between two 

neighbouring coils – the slot pitch τQ – is µ times as large in terms of wave lengths. 

 

Result: 
The induced voltage of a coil group equals the sum of q coil voltages that are shifted by the 

phase angle µα ,Q  (Fig. 4.7). 

Fig. 4.7 shows the induced coil voltages and their sum for q = 3. The ratio of the length of the 

phasor of the geometric sum µ,,
ˆ

griU  and the algebraic sum of the phasor of a coil voltage 

µ,,
ˆ

ciU can be derived from the figure: 
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Equation (4.36) equals the distribution factor as it was introduced in chapter 3.  

 

Result: 
The induced voltage of a coil group is by the distribution factor smaller than the induced 

voltage of an individual coil with the same number of turns as the coil group.  

 

c) Voltage Induction in the Phase of a Winding: 

A machine with 2p-poles and a two-layer winding has 2p coil groups, each with q generally 

short-pitched coils. Due to the short-pitching and the coil groups (q > 1), both pitch and 

distribution factor have to be taken into consideration, giving the winding factor. For the 

fundamental µ = 1, it is: 

 

111 pdw kkk ⋅=  (4.37) 

 

Using the number of turns N per phase, the r.m.s.-value of the stator voltage induced by the 

field fundamental of the rotor per phase is – in analogy to (4.26) – given by (4.38). 
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In analogy to (4.30), the phase voltages induced by the µth
 harmonic of the rotor field is 

with kw,µ  =  kp,µ
.
kd,µ  
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Example 4.3-1: 

- 12-pole synchronous generator: n = 500/min, 2p = 12, 50=f Hz 

- stator winding: Nc = 2, q = 2, W = 5/6τp, a = 1, τp = 0.5 m, l = 1 m 

- number of turns per phase: 481/2212/2 =⋅⋅== apqNN c  
 

µ 
δµB̂  fµ Φcµ µ,iU  1,i,i U/U µ  

- T Hz mWb V % 

1 0.9 50 276.7 2850.1 100 

3 0.15 150 -11.3 -254.6 8.9 

5 0.05 250 0.8 11.4 0.4 

7 0.05 350 -0.6 -11.4 0.4 
Table 4.3: Example of voltage induction in a phase of a winding due to fundamental and harmonic fields 

The amplitudes of the field of the rotor are given according to Table 4.2. The induced phase 

voltages of the harmonics are strongly reduced by the pitch and distribution factors. 

 

Result: 
When compared with the voltage of a fully-pitched winding (Ex. 4.2-1), the 5

th
 and the 7

th
 

harmonic of the voltage is reduced from 5.6% to 0.4% by the short-pitching. The 3
rd

 harmonic 

is also reduced but is still remarkable (8.9% of the fundamental). By using Y-connected stator 

windings, also the 3
rd

 harmonic (and multiples) are eliminated in the line-to-line voltage. 

 

Example 4.3-2: Third harmonic phase voltages: )3cos(33 tUU U ω=  

 
UW

UV

UtUtUU

UtUtUU

3333

3333

)3cos()343cos(

)3cos()323cos(

==+=

==+=

ωπω
ωπω

 

Third harmonic line-to-line voltage is zero: ! 033 =−== − VUVULL UUUU  
 

 

4.4 Self-Induction per Phase in a Three-Phase Winding 
 

a) Self-Induction of the Stator Rotating Field: 

A three-phase machine with constant air gap δ, the rotor without any winding, and a poly-

phase stator winding with m phases is considered. As shown in Chapters 2 and 3, this winding 

excites a step-like rotating field in the air gap (assuming µFe → ∞) when fed with a 

symmetrical three-phase current system with the frequency f and the r.m.s.-value I (current per 

phase). This can be expressed by a FOURIER sum of sinusoidal rotating waves. These waves 

with the ordinal numbers ν are rotating waves with – depending on the ordinal number – 

positive or negative sequence. 
 


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


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−⋅= t
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cosB̂)t,x(B
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ω
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δνδν      I
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νπδ

µ ν
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20=  (4.40) 

 

mg21+=ν , ...,,,,g 3210 ±±±=   

Electrical Machines and Drives 4/12 Voltage Induction 

Darmstadt University of Technology  Institute of Electric Energy Conversion 

Due to self-induction, these rotating stator field waves induce the stator winding. The 

circumference speed of the waves vν is proportional to 1/ν (Chapter 3). Accordingly, the 

fundamental and the harmonics induce the stator coils uniformly with the frequency f.  
 

fnpnpf =⋅=⋅⋅== )/(
2

νν
π

ω
ν  (4.41) 

 

Analogue to (4.39), the r.m.s.–value of the νth
 harmonic of the induced phase voltage is: 

 

δννν
ν

τ

π
π B̂lkNfU

p

,w,i

2
2 ⋅⋅⋅=  (4.42) 

 

b) Magnetising Main and Harmonic Leakage Inductance: 

Using the amplitude of the harmonic field (4.40), a correlation between the induced voltage 

and the current per phase is obtained, giving the reactance Xhν = ωLhν of the νth
 harmonic. 

 

ILIXU hh,i ννν ω==  (4.43) 

δ

τ

πν
µ ν

ν
⋅
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p
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pw
h 22

2
,2
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 (4.44) 

 

All self-inductances Lhν are only caused by the air gap field. This field is also called “main 
field”, because it is responsible for the conversion of electric into mechanical energy and vice 

versa. Therefore, the self-inductances of the rotating fields ν given by (4.44) are called 

magnetising inductances Lhν (index h).  

 

As all voltages Ui,ν are induced in the stator winding with the same frequency f, they can be 

summarised as the overall induced voltage ∑
∞

−= ,...7,5,1
,

ν
νiU . As all harmonic waves are excited by 

the same phase current I, an inductance of the total air gap field may be defined: 
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∑
ν

ν
ν

ν
ν

σ
ω

hoh
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toth LL
I

U

L  (4.45) 

 

The important inductance is the magnetising inductance of the fundamental Lh 
 

h

p

w,h L
p

lm
kNL =

⋅
==

δ

τ

π
µν 2

22
01

2
     . (4.46) 

 

The sum of the magnetising inductances of the harmonics is much smaller, expressed by the 

factor σo (harmonic leakage factor). The value of σo is usually smaller than 0.05. 
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Result: 
The harmonic air gap fields are not leakage fields, because they may flow through the rotor, 

causing forces and torques. However, as they are more a parasitic than a useful effect, their 

self inductance effect is summarized as harmonic leakage inductance hOLσ . 
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c) Alternative way to derive Lh by considering interaction of the three phases U, V, W: 

 

 
 

Fig. 4.8: Air gap flux density Bδ and the FOURIER fundamental Bδ,ν=1 of the phase winding U with q = 3, single-

layer winding, one pole is shown 

 

In the strict sense, the self-induction as described under b) is a combination of self-induction 

(e.g. phase U induces in phase U) and mutual induction (phase V and W induce in phase U). 

The field that is excited by the phase U is a stationary alternating field that pulsates with the 

frequency f.  

 

According to Chapter 3, the fundamental amplitude of the stationary alternating phase field is  
 

INk
p

B ,w, 1
0

1

22
== = ννδ

πδ

µ
.   .                (4.48) 

 

The flux per pole of the fundamental of a fully-pitched coil is  
 

11

2
== = νδν τ

π
Φ ,Fep,c Bl  ,                   (4.49) 

 

and the flux linkage of phase U caused by the phase current iU:   
 

11 == ⋅⋅=⋅= νν ΦΨ ,wUhUUUU kNiL   .                (4.50) 

 

Self-inductance of a phase: phh
p
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The flux linkage of the U-coils of the stationary alternating field generated by the current iV, 

(hatched area in Fig. 4.9), is – at same current amplitude – only half as large as the flux 

(4.42), because negative and positive flux components compensate partially. 
 

V
hUU

VhUUVhUVUV i
L

iL)/cos(iL ⋅−=⋅⋅=⋅=
2

32πΨ   .             (4.52) 

 

In the same way the flux linkage of phase U with the flux excited by phase W is calculated. 
 

W
hUU

WhUUWhUWUW i
L

iLiL ⋅−=⋅⋅=⋅=
2

)3/4cos( πΨ   .             (4.53) 

 

For a symmetrical three-phase system, it is: iU + iV + iW = 0. Hence, with iU = - iV - iW, the 

resultant magnetising inductance LhU of phase U is: 
 

UhUU iL=Ψ                      (4.54) 
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Hence, the magnetising inductance of one phase for m = 3 is is given by (4.56), what is in 

accordance with (4.46): 
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2
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2
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32
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Fig. 4.9: Flux linkage of phase U with the flux excited by phase V  

  

Result: 
It was shown that the magnetising inductance per phase of a three-phase system Lh is 1.5 

times the self-inductance of an individual phase. This is true for all three phases, because of 

the symmetry.  
 

Example 4.4-1: 

Inductance of a three-phase rotary reactor: The stator has a three-phase winding, the rotor 

does not have any winding. Per phase, the inductance Lh,tot (plus slot and end-winding leakage 

fields) is effective. 
 

 

4.5 Mutual Inductance of Two Phases of a Three-Phase Winding 
 

Fig. 4.10a shows a three-phase winding both in the stator and the rotor: 

- stator: phases U-X, V-Y, W-Z, index s,  

- rotor: phases u-x, v-y, w-z, index r. 

In Fig. 4.10b, the windings are expressed by the inductances Lph that are displaced by 2τp/3 

respectively in the same way as the physical phase windings.  
 

The rotor is at stand-still, but it is turned about an angle γ with respect to the stator. The angle 

γ is between the axes of the windings (middle of the coils) of rotor and stator as shown in 

Fig. 4.10a. If the rotor is turned about 2τp with respect to the stator, the angle γ values 2π. The 

number of poles of stator and rotor winding are the same (2p), but the parameter of the phase 

windings are generally different (Table 4.4). 

 

 Stator Rotor 

Number of poles 2p 2p 

Number of phases ms mr 

Number of turns Ns  Nr 

Short-pitching Ws/τp Wr/τp 

Number of slots per pole and phase qs qr 

Number of slots Qs Qr 
Table 4.4: Parameters of stator and rotor winding 
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If the phases of the stator are supplied with a symmetrical three-phase system (stator current 

Is, stator frequency fs), rotating waves travel in the air gap along the circumference, thereby 

inducing the rotor winding. 
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ssgm21+=ν , ,....,,,g s 3210 ±±±=  (4.58) 

 
 

 
a)                                                                                     b) 

Fig. 4.10: Three-phase winding of stator and rotor of an electric machine with constant air gap, a) cross-sectional 

view for a machine with 2p = 2, ms = mr = 3, qs = qr = 1, Ws = Wr =τp, b) schematic for arbitrary winding 

parameters  

 

The amplitudes of the induced voltages (4.59) have to be calculated in analogy to (4.42). The 

rotor frequency fr in the rotor at stand-still equals the stator frequency: fr = fs. 
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The mutual inductance per phase of the three-phase system Msr,νννν for the field harmonic ν  

is obtained from (4.48), (4.49): 
 

s,srs,r,i IMU νν ω=  (4.60) 

 

δ

τ

νπ
µ ννν

l

p

m
kNkNM

ps
rwrswssr 22,,,,0,

12
=  (4.61) 

 

As the values of Msr,ν decrease at least with the square of the ordinal number 1/ν2
, they 

quickly become so small that it is sufficient to consider only the fundamental. 

 

Example 4.5-1: 

Mutual inductance M of a field harmonic: The first relevant harmonic has the ordinal 

number ν = 5. Therefore, it is Msr,5/Msr,1 < 1/25 = 0.04. 
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Because of the rotor shift by γ with respect to the stator, the induced rotor voltages have the 

voltage phase shift γ with respect to the induced stator voltages. This phase shift equals the 

travelling distance of the rotating waves between the axes of the stator and rotor windings. 

Further, as the rotor phases u, v, w are also spatially displaced by 2τp/3, their induced phase 

voltages are phase shifted by 2π/3. Hence, they also form a symmetrical three-phase system.  
 

Example 4.5-2: 

Rotary transformer: 
If the phases U and u of the stator and the rotor are connected in series (the same V and v, and 

W and w), the stator and rotor phase voltages add to each other. The following voltage is 

induced between the two terminals (input of the stator phase, output of the rotor phase): 
 

γj
rsrs eUUUUU

−+=+=  (4.62) 
 

The amplitude and the phase of the resultant voltage can be adjusted continuously by 

continuous variation of the angle γ. If e.g. the windings of stator and rotor are identically 

designed, it is Ur = Us and therefore:  
 

( )γγ j
s

j
ss eUeUUU

−− +⋅=+= 1  (4.63) 
 

At γ = 0, the value of the stator voltage is doubled to 2Us, at γ = π it is zero. 

 

Result: 
The rotary transformer allows continuous variation of the voltage from 0 up to 2Us. 
 

Rotary transformers (“induction regulators”) are often used in test floors, where a continu-

ously adjustable amplitude of the voltage is used e.g. for the measurement of the characteristic 

curves at no-load and at short-circuit of induction machines or transformers. 
 

 

a)        b)  
 

Fig. 4.11: Rotary transformer: a) principle set-up, b) voltage generation 


