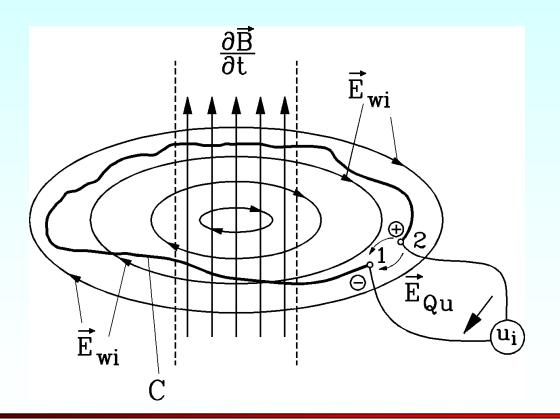
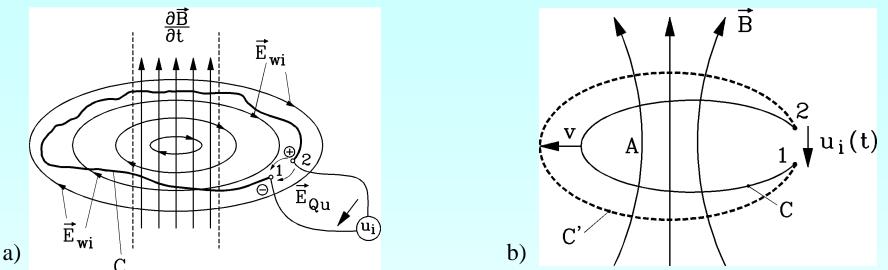
4. Voltage Induction in Three-Phase Machines



FARADAY's law of induction



Each change of flux Φ , which is linked to conductor loop *C*, causes an induced voltage u_i in that loop; the induced voltage is the negative rate of change of the linked flux. $u_i = -d\Phi/dt$ Fluß: $\Phi = \int \vec{B} \cdot d\vec{A}$

f coil is used instead of loop with *N* series connected turns, so
$$u_i$$
 is *N*-times bigger:
 $u_i = -N \cdot d\Phi / dt$

• "Flux linkage" $\Psi = N \cdot \Phi \implies u_i = -a$

$$u_i = -d\Psi/dt$$

• Changing of Ψ : a) *B* is changing, b) Area *A* is changing with velocity *v*

TECHNISCHE UNIVERSITÄT DARMSTADT

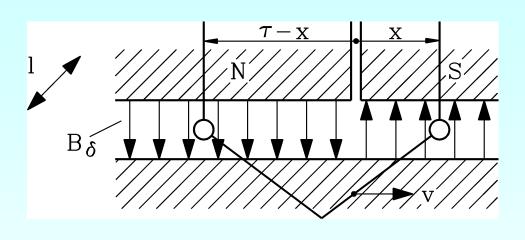
Induction in resting and moving coils

Resting coils	Moving coils			
Flux density <i>B</i> is changing with time	Flux density <i>B</i> is constant with time			
Coil at rest	Coil moving with velocity v			
$u_i = -d\Psi/dt = -N \cdot d\Phi/dt$				
$u_i = -\partial \Psi / \partial t = \oint \vec{E}_{Wi} \cdot d\vec{s}$	$u_i = \oint \left(\vec{v} \times \vec{B} \right) \cdot d\vec{s} = \oint \vec{E}_b \cdot d\vec{s}$			
Electric field strength \vec{E}_{Wi} $(\vec{E}_{Wi} \Leftrightarrow -\partial \vec{B}/\partial t)$	Electric field strength $\vec{E}_b = \vec{v} \times \vec{B}$			
Application of FARADAY's law:				
 Transformer coils Stator coils of AC machines 	Rotating armature of DC machines			
Transformer induction	Rotating induction			
• $\frac{d\Phi}{dt} = \frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A} = \int_{A=const.} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} - \oint_{C} (\vec{v} \times \vec{B}) \cdot d\vec{s}$ (Derivative of product !)				

$$u_{i} = \oint_{N \cdot C} \left(\vec{E}_{Wi} + \vec{E}_{b}\right) \cdot d\vec{s} = N \cdot \int_{A} -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} + N \cdot \oint_{C} (\vec{v} \times \vec{B}) \cdot d\vec{s} = -\frac{d\Psi}{dt}$$

Example: Induced voltage in simple linear machine

• Coil (number of turns N_c , coil span τ) moves within air gap between iron yoke and permanent magnets (Poles N-S-N-S, Pole width $b_p = \tau$) with velocity v.



a) <u>*u*</u>_{*i*} induced in moving coil:

 $\partial B / \partial t = 0$: no change of flux density. Loop *C* only considered along length 2*I*, as winding overhang outside of magnetic field.

 $\vec{v}, \vec{B}, \vec{s}$ perpendicular to each other: $u_i = N_c \cdot 2 \int (\vec{v} \times \vec{B}) \cdot d\vec{s} = \underline{2N_c v Bl}$

b) <u>u_i derived from change of total flux linkage: observer rests with coil: u_i = -d ¥/dt : (ALTERNATIVE CALCULATION TO a) !)</u>

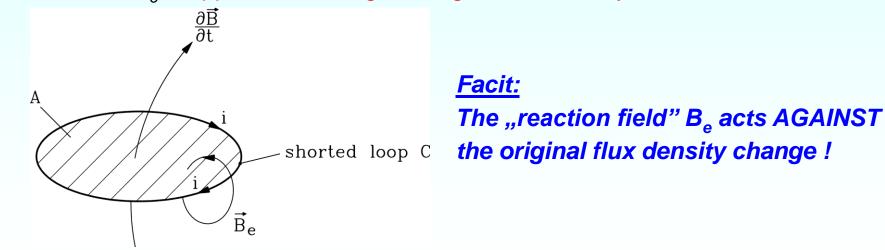
Flux linkage changes $d\Psi/dt$, because coil moves, giving change of coil co-ordinate x = vt! Coil flux linkage: $\Psi = N_c \int_A \vec{B} \cdot d\vec{A} = N_c \cdot l \cdot [(\tau - x)B_\delta - xB_\delta] = N_c lB_\delta (\tau - 2x)$ Induced voltage: $u_i^A = -d\Psi/dt = -N_c lB_\delta \cdot d(\tau - 2 \cdot v \cdot t)/dt = 2N_c vB_\delta l$

Facit : Induced voltage u_i may be ALWAYS derived from change of total flux linkage.

Law of induction: also called: "LENZ's rule"

Lenz's rule: A change of flux linkage induces voltage u_i , which drives a current *i* in the loop, which excites a magnetic field B_e , whose direction is opposite to the original change of flux linkage.

- Example: Induction in short circuited loop at rest.
- The change of external field *B* causes an increase of flux density with orientation from bottom to top. This causes increase of flux in loop area *A* and **induces electrical field** E_{Wi} .
- E_{Wi} is left hand oriented to $\partial \vec{B} / \partial t$ and drives in loop C a current *i*.
- Current *i* excites (Ampere's law !) a right hand oriented magnetic field B_e .
- Orientation of B_e is opposite to change of original flux density $\partial \vec{B} / \partial t$.

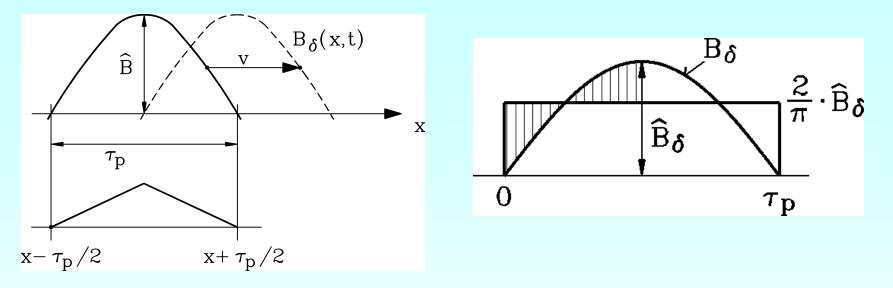


TECHNISCHE

JNIVERSITÄT

DARMSTADT

Induction of voltage in stator coil



• Sinusoidal moving wave $B_{\delta 1}(x,t) = \hat{B}_{\delta 1} \cos(x\pi/\tau_p - \omega t)$ causes changing coil flux $\Phi(t)$ $\Phi(t) = l \int_{-\tau_p/2}^{\tau_p/2} B_{\delta 1}(x,t) dx = \frac{2}{\pi} \tau_p l \hat{B}_{\delta 1} \cdot \cos \omega t \implies \text{flux linkage } \Psi(t) = N_c \Phi(t)$

• Induced AC voltage in coil is sinusoidal: $u_{i,c}(t) = -d\Psi_c(t)/dt = \hat{U}_{i,c}\sin\omega t$

Voltage amplitude:

TECHNISCHE

UNIVERSITÄT

DARMSTADT

$$\hat{U}_{i,c} = \omega N_c \Phi_c = 2\pi f N_c \frac{2}{\pi} \tau_p l \hat{B}_{\delta 1}$$

(full-pitched coil)

Prof. A. Binder : Electrical Machines and Drives 4/6

Institut für Elektrische Energiewandlung • FB 18

Induced voltage by fundamental and harmonic waves

• Rotating rotor field (speed *n*): is a *FOURIER*-sum of **fundamental** and **harmonic waves**:

$$B_{\delta,\mu}(x,t) = \hat{B}_{\delta\mu} \cos(\frac{\mu x \pi}{\tau_{p_{\tau_p}/2}} - \mu \cdot \omega \cdot t), \quad \mu = 1, 3, 5, 7, \dots \quad \omega = 2\pi \cdot n \cdot p$$

• AC coil flux: $\Phi_{c\mu}(t) = l \int_{-\tau_p/2}^{-\tau_p/2} B_{\delta,\mu}(x,t) dx = \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} l \hat{B}_{\delta\mu} \cdot \sin(\frac{\mu \pi}{2}) \cdot \cos(\mu \omega t)$
• Induced voltage: $u_{i,c,\mu} = -N_c \frac{d\Phi_{c\mu}}{dt} = \mu \omega \cdot N_c \cdot \frac{2}{\pi} \frac{\tau_p}{\mu} l \hat{B}_{\delta\mu} \cdot \sin(\frac{\mu \pi}{2}) \cdot \sin(\mu \omega t)$

Facit:

In stator coil not only "useful" voltage due to fundamental (frequency $f = n \cdot p$) is induced, but also harmonic AC voltages with smaller amplitudes, but increased frequencies.

• Smaller voltage amplitudes proportional $\hat{B}_{\delta\mu}$, harmonic frequencies $f_{\mu} = \mu \omega / (2\pi)$.

<u>Note</u>: $sin(\mu \pi / 2) = (-1)^{(\mu-1)/2}$ with $\mu = 1, 3, 5, ...$ gives only 1, -1, 1, -1, Expression changes only sign, but not amplitude.

TECHNISCHE

INIVERSITÄT

DARMSTADT

Example: No-load voltage in full-pitched coils

• 12-pole synchronous generator: n = 500/min, 2p = 12, full-pitched coils, stator coil data: $N_c = 2$, $W = \tau_p = 0.5$ m, l = 1 m

Fundamental frequency of induced voltage: $f = n \cdot p = (500/60) \cdot 6 = 50$ Hz

• Induced harmonic voltage amplitudes depend on rotor air gap field amplitudes $\hat{B}_{_{\delta \mu}}$:

μ	$\hat{B}_{\delta\mu}$	$\hat{B}_{\delta\mu}$ / $\hat{B}_{\delta1}$	f_{μ}	$arPsi_{ extsf{c}\mu}$	$U_{i,c\mu} = \hat{U}_{i,c\mu} / \sqrt{2}$	$U_{i,c\mu}$ / $U_{i,c1}$
-	Т	%	Hz	mWb	V	%
1	0.9	100	50	286.5	127.2	100
3	0.15	16.7	150	-15.9	-21.2	16.7
5	0.05	5.6	250	3.3	7.1	5.6
7	0.05	5.6	350	-2.3	-7.1	5.6

Facit: Amplitude spectra of inducing field and induced voltage are identical: For a fullpitched coil the spatial field distribution and the time function of voltage are identical !

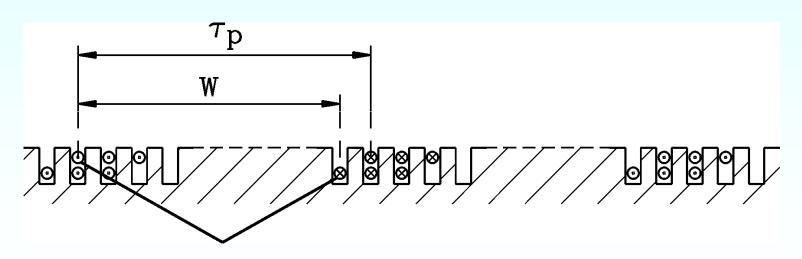
Induction of voltage in pitched coil

• Pitched coil: Coil span is only W instead of τ_p :

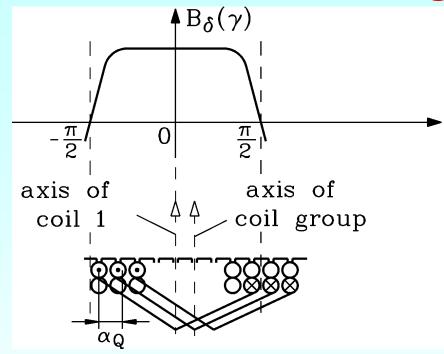
$$\Phi_{c\mu}(t) = l \int_{-W/2}^{W/2} \hat{B}_{\delta\mu} \cos(\frac{\mu\pi x}{\tau_p} - \mu\omega t) dx = \frac{2}{\pi} \frac{\tau_p}{\mu} l \hat{B}_{\delta\mu} \cdot \sin(\mu \frac{\pi}{2} \frac{W}{\tau_p}) \cdot \cos\omega t$$

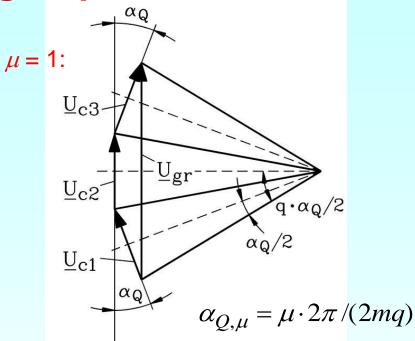
Linked coil flux is smaller by **pitch coefficient** $k_{p,\mu}$, compared to full-pitched coil.

$$k_{p,\mu} = \sin\!\left(\mu\frac{\pi}{2} \cdot \frac{W}{\tau_p}\right)$$



Induction of voltage in group of coils





•The induced sinusoidal AC voltage per coil group is the sum of complex phasors of the q coils. The coil voltage phasors are phase shifted by angle $\alpha_{Q,\mu}$ between adjacent coils:

$$k = k_{d,\mu} = \frac{\hat{U}_{i,gr,\mu}}{q\hat{U}_{i,c,\mu}} = \frac{2\sin\left(q\frac{\alpha_{Q,\mu}}{2}\right)}{q\cdot 2\sin\left(\frac{\alpha_{Q,\mu}}{2}\right)} = \frac{\sin\left(\mu\frac{\pi}{2m}\right)}{q\cdot \sin\left(\mu\frac{\pi}{2mq}\right)}$$

Distribution coefficient:

Induced voltage per phase

• Machine with 2*p* poles, **two-layer winding: One phase consists of** 2*p* coil groups with *q* pitched coils per group.

• Induced voltage per phase (r.m.s. value):

Fundamental:

$$U_{i1} = \sqrt{2}\pi f \cdot N \cdot k_{w1} \cdot \frac{2}{\pi} \tau_p l\hat{B}_{\delta 1} \qquad N = 2pqN_c / a \qquad k_{w1} = k_{d1} \cdot k_{p1}$$

$$\mu \text{-th harmonic:} \qquad U_{i,\mu} = \sqrt{2}\pi\mu f \cdot N \cdot k_{w,\mu} \cdot \frac{2}{\pi} \frac{\tau_p}{\mu} l\hat{B}_{\delta \mu}$$

<u>Example</u>: 12-pole synchronous generator: n = 500/min, 2p = 12, f = 50 Hz

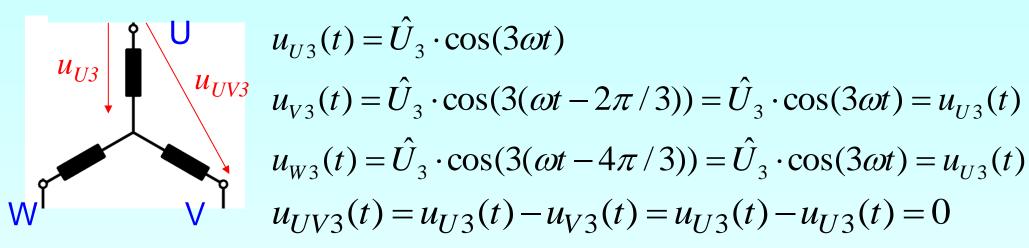
- Stator winding:
$$N_c = 2, q = 2, W = 5/6\tau_p, a = 1, \tau_p = 0.5 \text{ m}, l = 1 \text{ m}$$

- Number of turns per phase: $N = 2pqN_c / a = 12 \cdot 2 \cdot 2 / 1 = 48$

μ	$\hat{B}_{\delta\mu}$	$\hat{B}_{\delta\mu}$ / $\hat{B}_{\delta1}$	f_{μ}	$arPhi_{C\mu}$	$U_{i,\mu}$	$U_{i,\mu}/U_{i,1}$
-	Т	%	Hz	mWb	V	%
1	0.9	100	50	276.7	2850.1	100
3	0.15	16.7	150	-11.3	-254.6	8.9
5	0.05	5.6	250	0.8	11.4	0.4
7	0.05	5.6	350	-0.6	-11.4	0.4

Facit: By pitching and by coil group arrangement voltage harmonics are reduced drastically.

Star connection: no "third" voltage harmonic

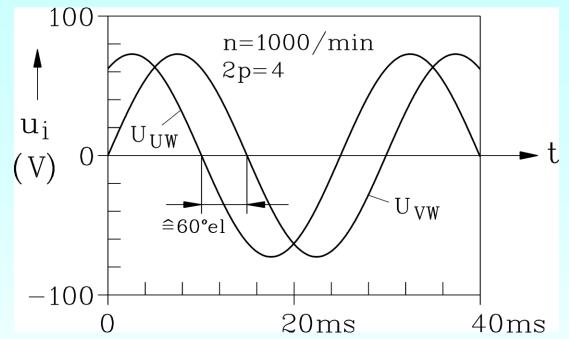


If the stator winding is star connected, the third harmonic voltages in all three phases U, V, W are IN phase and IDENTICAL !

Therefore the <u>line-to-line voltages</u> do not show 3rd harmonic voltage component. Phase voltages in phase cause IN PHASE 3rd harmonic currents, which CANNOT flow at isolated star point (due to 2nd *Kirchhoff* s law)

$$\underline{I}_3 = \underline{U}_3 / \underline{Z}_3 \implies \underline{I}_{U3} + \underline{I}_{V3} + \underline{I}_{W3} = 3\underline{I}_3 = 0 \implies \underline{I}_3 = 0$$

Star connection: no "third" voltage harmonic

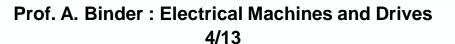


Measured no-load voltage line-to-line of a 4 pole PM synchronous generator at 1000/min, q = 3, skewed slots, star connection, **showing nearly ideal sine wave back EMF** *Fourier*-Analysis of no-load voltage: $\mu = 1$: 33.5 Hz, 74.8 V

 μ = 5: 167 Hz, 0.34 V Other amplitudes μ > 5 are negligible !

TECHNISCHE

DARMSTADT



Three phase winding: Self induction leads to magnetizing inductance

Stator air gap field waves, excited by stator current *I*, induce in stator winding by self induction the voltage u_i !

$$B_{\delta \nu}(x,t) = \hat{B}_{\delta \nu} \cdot \cos\left(\frac{\nu\pi x}{\tau_p} - \omega t\right) \quad \hat{B}_{\delta \nu} = \frac{\mu_0}{\delta} \frac{\sqrt{2}}{\pi} \frac{m}{p} N \frac{k_{w,\nu}}{\nu} I \quad \nu = 1, -5, 7, -11, 13, \cdots$$

• Stator air gap field waves $B_{\delta v}(x,t)$: Speed n_v is n_{syn}/v . Hence stator field fundamental and field harmonics induce in stator coils ALL with the same frequency f.

$$f_{\nu} = \nu \cdot p \cdot (n_{syn} / \nu) = p \cdot n_{syn} = f$$

• r.m.s. of self-induced voltage per phase for each v-th field harmonic:

$$U_{i,\nu} = \sqrt{2}\pi f \cdot N \cdot k_{w,\nu} \cdot \frac{2}{\pi} \frac{\tau_p}{\nu} l\hat{B}_{\delta\nu}$$

• Magnetizing inductance per phase: $L_{h\nu}$ for ν -th air gap field harmonic wave.

TECHNISCHE UNIVERSITÄT DARMSTADT

Stray inductance of stator winding per phase

$$L_{\sigma} = L_{\sigma,Q} + L_{\sigma,b} + L_{\sigma,o}$$

Air gap field: <u>Fundamental</u> wave = Magnetizing field (subscript h): <u>I</u>
 Magnetizing inductance L_h

- Magnetic field in slots (slot stray field) and around the winding overhang is NOT linked with rotor winding. It does NOT produce any forces with rotor current. Hence it does NOT contribute to electromechanical energy conversion, and is thus called stray field (subscript σ).
- Stray flux induces in stator winding additional voltage by self induction. Hence we define: Slot stray inductance $L_{\sigma Q}$, overhang stray inductance $L_{\sigma b}$: $U_{i\sigma,Q+b} = \omega(L_{\sigma Q} + L_{\sigma b})I$
- Air gap field <u>harmonic</u> waves induce stator winding with voltage $U_{i,v}$ with the same frequency *f*. So they are summarized as total harmonic voltage : $\sum_{i,v}^{\infty} U_{i,v}$

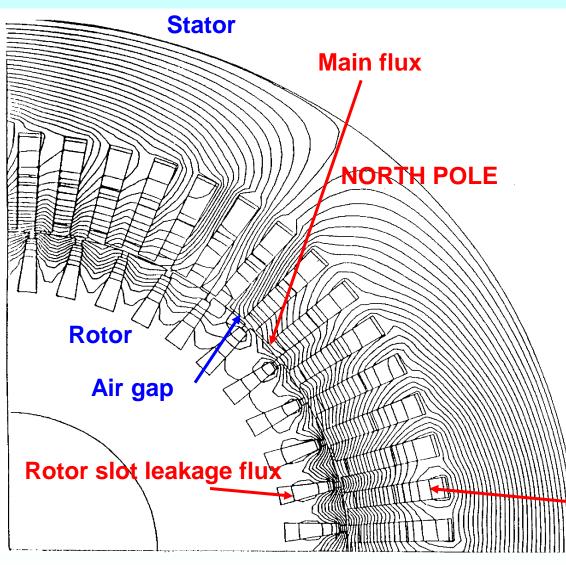
$$L_{h,total} = \frac{\sum_{\nu=1,-5,7,\dots}^{\infty} U_{i,\nu}}{\omega I} = \sum_{\nu=1,-5,7,\dots}^{\infty} L_{h\nu} = (1+\sigma_o)L_{h,\nu=1}$$

$$\sigma_{o} = \sum_{\nu=1,-5,7,...}^{\infty} \left(\frac{k_{w,\nu}}{\nu \cdot k_{w,1}}\right)^{2} - 1$$

 σ_o : harmonic stray coefficient (is small: ca. 0.03 ... 0.09).

• Harmonic field waves are linked to rotor, but "disturbe" basic machine function; hence they are summarized in harmonic stray inductance $L_{\sigma\sigma}$: $U_{i\sigma,o} = \omega L_{\sigma,o}I$, $L_{\sigma,o} = \sigma_o L_h$

Field lines B of a cage induction machine



Main flux: Links stator and rotor winding; field lines cross the air gap

Leakage flux (stray flux): Is only linked with either stator or rotor winding; field lines DO NOT cross the air gap

Example:

Four-pole wedge bar rotor:

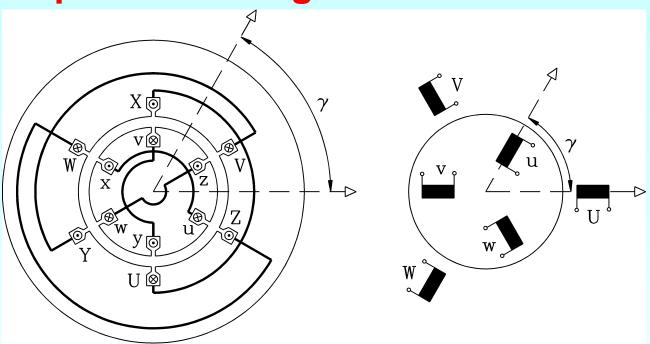
Field lines at stand still (*n* = 0)

- Rotor frequency = Stator frequency
- Rotor current is NEARLY in phase opposition to stator current

Stator slot leakage flux

TECHNISCHE UNIVERSITÄT DARMSTADT

Three phase winding in stator and rotor



- In stator and in rotor each a three-phase winding is arranged:
- in stator: 3 phases between terminals U-X, V-Y, W-Z, subscript s,
- in rotor: 3 phases between terminals u-x, v-y, w-z, subscript r.
- We assume: Rotor is at rest (stand still), and is turned by angle γ with respect to stator. γ = angle between winding axis of stator and rotor winding (= centre of coils). NOTE: $\gamma = 2\pi$, if rotor is shifted to stator by 2 poles: $2\tau_p$.
- Pole numbers of stator and rotor winding must be identical 2p !

TECHNISCHE UNIVERSITÄT DARMSTADT

Mutual inductance between stator and rotor phase

	Stator	Rotor	
Pole count	2р	2p	From not field wa
Phase count	m _s	m _r	neid wa
Turns/Phase	Ns	N _r	
Pitching	W_{s}/ au_{p}	$W_{\prime} \tau_{ m p}$	
Coils/group	$q_{\rm s}$	q_r	
Slot count	Q_s	Q _r	$Q_r \neq Q_s$

From now on only fundamental field waves considered !

• Mutual inductance: e. g.: Stator air gap wave $B_{\delta}(x,t)$ induces voltage in rotor winding: $B_{\delta}(x,t) = \hat{B}_{\delta} \cdot \cos(\frac{\pi x}{\tau_p} - \omega_s t)$ with amplitudes $\hat{B}_{\delta} = \frac{\mu_0}{\delta} \frac{\sqrt{2}}{\pi} \frac{m_s}{p} N_s k_{ws} I_s$

• Amplitudes of induced voltages in rotor winding:

 $U_{i,r} = \sqrt{2}\pi f_s \cdot N_r \cdot k_{wr} \cdot \frac{2}{\pi} \tau_p l \hat{B}_{\delta}$ Rotor frequency f_r (at locked rotor = stand still): $f_r = f_s$.

• Fundamental wave: Mutual inductance per phase M_{sr} : $U_{i,r} = \omega_s M_{sr} I_s$

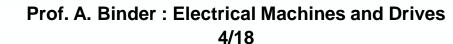
$$M_{sr} = \mu_0 N_s k_{w,s} N_r k_{w,r} \frac{2m_s}{\pi^2} \frac{1}{p} \frac{\tau_p l}{\delta}$$
 Note: $M_{sr} = M_{rs}$ at $m_s = m_r$

C

TECHNISCHE

JNIVERSITAT

DARMSTADT



Rotary transformer

- Induced rotor voltages are **phase shifted** by angle γ with respect to stator voltages, as rotor is shifted by that angle γ mechanically.
- Series connection of stator and rotor winding U and u (in the same way: V and v; W and w)
 ⇒ The following resulting voltage occurs between FIRST terminal of stator winding and SECOND terminal of rotor winding (per phase):

 $\underline{U} = \underline{U}_s + \underline{U}_r = U_s + U_r e^{-j\gamma}, \quad \text{e. g. } U_r = U_s: \quad \underline{U} = U_s + U_s e^{-j\gamma} = U_s \cdot \left(1 + e^{-j\gamma}\right)$

• By turning the rotor we get a continuous change of angle γ .

<u>**Facit:**</u> With rotary transformer a **continuous change** of output voltage between 0 and $2U_s$ is possible at constant line frequency, which is used in test facilities as variable voltage source.

