M8: Frequenzgesteuerte Asynchronmaschine

TECHNISCHE UNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung

Elektromaschinen- und Energietechnisches Praktikum

Inhaltsverzeichnis

1.	Einleitung	1
	1.1.Vergleich verschiedener Antriebskonzepte	2
2.	Grundlagen der Asynchronmaschine	2
	2.1.Wirkungsweise der Asynchronmaschine	3
	2.2.Grundgleichungen und Ersatzschaltbild der Asynchronmaschine	4
	2.3.Stromverdrängung und Anlaufmomenterhöhung	5
	2.4.Drehzahlsteuerungsvarianten der ASM	6
	2.4.1. Polumschaltbare Wicklungen	6
	2.4.2. Schlupfsteuerung	7
	2.4.3. Veränderung der Ständerspannung	8
	2.4.4. Veränderung der Ständerspannung und Frequenz (U/f-Kennliniensteuerung)	8
	2.5.Feldorientierte Regelung	11
3.	Frequenzumrichter	14
	3.1.Aufbau des Frequenzumrichters	14
	3.2.Ansteuerung der Schalter	16
	3.2.1. Unterschwingungsverfahren	16
	3.2.2. Synchrone und asynchrone Taktung	16
	3.2.3. Steuerbereiche der Stromrichter	17
	3.3.Oberschwingungen	18
4.	Versuchsaufbau und Inbetriebnahme	19
	4.1.Versuchsaufbau	19
	4.2.Erfassung der Messgrößen	19
	4.2.1. Spannungsmessungen	19
	4.2.2. Strommessungen	19
	4.2.3. Drehzahlmessung	20
	4.2.4. Drehmomentmessung	21
	4.3.Inbetriebnahme	23
5.	Versuchsdurchführung	24
	5.1 Asynchronmaschine am Sinusnetz	24
	5.1.1. Anlauf und Leerlauf der ASM am Sinusnetz	24
	5.1.2. Fourier-Analyse der Strom- und Spannungsverläufe bei Sinusbetrieb	24
	5.1.3. Belastungskennlinie bei Sinusspeisung	24
	5.2.Asynchronmaschine am Umrichter	25
	5.2.1. Inbetriebnahme des Umrichters	25
	5.2.2. Aufnahme der U/f-Kennlinie und des Leerlaufstroms im Umrichterbetrieb	29
	5.2.3. Oszilloskopieren von Umrichtereingangsstrom und -spannung	30
	5.2.4. Messung der Schaltfrequenzen des Umrichters	30
	5.2.5. Fourier-Analyse der Strom- und Spannungsverläufe bei Umrichterbetrieb	30
	5.2.6. Belastungskennlinien bei Umrichterbetrieb mit U/f-Kennliniensteuerung	31
	5.2.7. Belastungskennlinien bei Umrichterbetrieb mit Schlupf-Kompensation	32

	5.2.8. Belastungskennlinien bei Umrichterbetrieb mit feldorientierter Regelung	33
	5.2.9. Lastsprünge mit feldorientierter Regelung	35
6.	Versuchsausarbeitung	36
	6.1.Asynchronmaschine am Sinusnetz	36
	6.1.1. Anlauf und Leerlauf der ASM am Sinusnetz	36
	6.1.2. Fourier-Analyse der Strom- und Spannungsverläufe bei Sinusbetrieb	36
	6.1.3. Belastungskennlinie bei Sinusspeisung	36
	6.2.Asynchronmaschine am Umrichter	36
	6.2.1. Aufnahme der U/f-Kennlinie und des Leerlaufstroms im Umrichterbetrieb	36
	6.2.2. Oszilloskopieren von Umrichtereingangsstrom und -spannung	37
	6.2.3. Messung der Schaltfrequenzen des Umrichters	37
	6.2.4. Fourier-Analyse der Strom- und Spannungsverläufe bei Umrichterbetrieb	37
	6.2.5. Belastungskennlinien bei Umrichterbetrieb mit U/f-Kennliniensteuerung	37
	6.2.6. Belastungskennlinien bei Umrichterbetrieb mit Schlupf-Kompensation	37
	6.2.7. Belastungskennlinien bei Umrichterbetrieb mit feldorientierter Regelung	37
	6.2.8. Lastsprünge mit feldorientierter Regelung	37
	6.3. Vergleich der ASM am Sinusnetz mit der Asynchronmaschine am Umrichter	37
7.	Schaltplan des Versuchsstandes	39
8.	Literaturverzeichnis	40
9.	Anhang: Prinzip der feldorientierten Regelung bei ASM	41
10.	Verständnisfragen	42

1. Einleitung

Die Asynchronmaschine (ASM) mit Kurzschlussläufer ist die bevorzugt eingesetzte elektrische Maschine in der Antriebstechnik. Durch ihre relativ einfache Bauweise und Robustheit und der damit verbundenen minimalen Störanfälligkeit ist sie eine kostengünstige und mehr als konkurrenzfähige Alternative zu anderen rotierenden elektrischen Energiewandlern. In der Industrie ist der Kurzschlussläufer mit über 80% Marktanteil die dominierende Maschine und wurde daher auch genormt, zu so genannten Normmotoren, die sich in einem Leistungsbereich von 0,2kW bis 50kW erstrecken. Asynchrongeneratoren gibt es nur selten, sie werden meist für Sonderzwecke eingesetzt, wie z.B. kleinere Blockheizkraftwerke, Windgeneratoren, Laufwasserkraftwerke und Diesel-Notstromaggregate. Weitere prägnante Vorteile des Käfigläufers sind die hohe Überlastbarkeit, das geringe Leistungsgewicht, das kompakte Bauvolumen und vor allem die hohe Schutzart, die erreicht werden kann.

Wesentliches Merkmal des Käfigläufers ist die Unzugänglichkeit des Läuferkäfigs, der bei kleineren und mittleren Maschinen aus massiven Stäben aus Aluminium oder Silumin und bei größeren Maschinen aus Kupfer, Messing oder Bronze besteht, die auf beiden Seiten mit Kurzschlussringen verbunden sind. Die Eigenschaften des Käfigläufers können daher nach der Fertigung nicht mehr verändert werden. Bei ungeregelten Antrieben, wie z.B. Pumpen, Kompressoren und Lüftern, hat dieser Nachteil keinen Einfluss, da hier mit einer nahezu konstanten Drehzahl gefahren wird. Ist aber eine stufenlose Drehzahleinstellung erwünscht, wie beispielsweise bei Förderbändern, Aufzügen, Extrudern, Wickelantrieben, Rührwerken und Traktionsantrieben, so kann dies in den meisten Fällen nur durch Verändern der Frequenz und Größe der Ständerspannung geschehen, was die Verwendung eines Frequenzumrichters erfordert.

In den Frequenzumrichtern neuerer Generation werden die klassischen netzgeführten Stromrichterthyristoren durch selbstgeführte abschaltbare Elemente, wie z.B. IGBT's (Insulated Gate Bipolar Transistor) ersetzt. Vorteile sind unter anderem die hohe erreichbare Schaltfrequenz, die Möglichkeit des Vier-Quadranten Betriebs (Abbildung 1) und die auf der Maschinenseite frei einstellbare Spannung bzw. Frequenz.

Abbildung 1: Vier-Quadranten Betrieb eines drehzahlveränderlichen Antriebs

Anhand zweier Betriebsarten, nämlich der U/f-Kennliniensteuerung und der feldorientierten Regelung, soll das Betriebsverhalten eines umrichtergespeisten drehzahlveränderlichen Asynchronmotors untersucht werden. Dabei soll die ASM bei Sinus- und Umrichterbetrieb verglichen werden. Im Umrichterbetrieb werden die U/f-Kennliniensteuerung und die feldorientierte Regelung vorgestellt.

1.1. Vergleich verschiedener Antriebskonzepte

Ein Vergleich der ASM mit anderen elektrischen Antrieben zeigt Tabelle 1. Selbstverständlich kann diese Bewertung nicht absolut gelten, da sie u.a. von nicht aufgeführten Einflussgrößen (z.B. Nennleistung, Stromversorgung) abhängt.

Antriebe	GM mit var	Einphasen- Reihenschlu	SMf =	SMf =	ASM Schleifr	ASM Polumsch	ASM Käfigl	ASM Käfiol
Eigenschaft	Ankerspg.	ssmotor	const.	vur.	f = const.	f = const.	f = const.	f = var.
Grenzleistung	++	+	+++	+++	+++	++	+++	+++
Höchstdrehzahl	++	+	+	++	+	+	+	+++
Bremsung	+ + +	+	+	+++	+	++	_	+++
Drehzahleinstellung	+++	+++		+++	-	+		+++
Nebenschlussverhalten	möglich	nein	(starr)	möglich	ja	ja	ja	ja
Hauptschlussverhalten	möglich	ja	nein	möglich	nein	Nein	nein	nein
Stabilität	+	++	-	+	+	+	+	+
Dynamik	+ + +	_		++				++
Anlaufmoment	+++	++		++	+++	+	+	++
Überbelastbarkeit	+++	++	+	+++	++	++	++	+++
Gewicht/Bauvolumen	+	_	+	+	+	_	++	+++
Trägheitsmoment	groß	groß	mäßig	mäßig	mäßig	klein	klein	sehr klein
Störanfälligkeit	-		+	+	+	+++	+++	+++
Wartungsbedarf								
Wirkungsgrad von								
Maschine und	++	-	+++	++	+	+	+++	++
Stromversorgung								
Anschaffungskosten für								
Maschine und		-	_		-	+	+++	
Stromversorgung								

Die Bewertungsskala reicht hierbei von: + + + =sehr günstig ... --- =sehr ungünstig

Tabelle 1: Eigenschaften der wichtigsten elektrischen Antriebe (GM: Gleichstrommaschine; SM: Synchronmaschine; ASM: Asynchronmaschine)

2. Grundlagen der Asynchronmaschine

Den grundsätzlichen Aufbau eines Asynchronnormmotors gibt Abbildung 2 wieder. Der Ständer besteht aus einem Gussgehäuse mit eingepresstem Blechpaket. In das Ständerblechpaket wird in der Regel eine dreiphasige Ständerwicklung (aus Kupfer) eingelegt. Die drei Stränge U, V und W, mit den Anschlusspunkten U1-U2, V1-V2 und W1-W2 am Klemmenbrett, sind räumlich um je ein Drittel einer Polpaarteilung zueinander versetzt. Am Klemmenbrett sind also 6 Anschlüsse vorhanden, mit denen die Möglichkeit besteht, die Ständerwicklung in Dreieck oder Stern zu verschalten. Hauptbestandteile des Läufers sind das auf der Welle angebrachte Läuferblechpaket, die in den Nuten angebrachten Läuferstäbe und die an den Stirnseiten der Stäbe angebrachten Kurzschlussringe. Beachten Sie, dass die Stäbe des Läufers leicht geschrägt sind, um parasitäre Effekte (z.B. das sog. Nutrasten) zu verringern. Wichtig ist hierbei, dass bei allen Normmotoren der Lüfter auf der Rotorwelle sitzt und von diesem angetrieben wird, so dass er bei der Verlustbilanz berücksichtigt werden muss.

Die Käfige und Kurzschlussringe werden in der Regel im Druck- oder Schleudergussverfahren hergestellt. Durch geschickten konstruktiven Aufbau des Käfigs, das heißt durch die Wahl des Käfigmaterials und der Käfigform, kann das Betriebsverhalten der ASM wesentlich beeinflusst werden, was in Kapitel 2.3 näher beschrieben werden soll.

Abbildung 2: Grundsätzlicher Aufbau einer ASM mit Käfigläufer [1]

2.1. Wirkungsweise der Asynchronmaschine

Wird der Ständer der ASM von einem Drehspannungsystem, also von drei 120° zueinander phasenverschobenen Strömen gespeist, so entsteht ein Magnetfeld, welches sich aus der Überlagerung der drei Strangmagnetfelder ergibt. Dieses Feld rotiert mit der Synchrongeschwindigkeit v_{syn} , es entsteht ein so genanntes Drehfeld. Sind die Frequenz des Drehspannungssystems f und die Polpaarzahl p des Ständers bekannt, so kann die Drehzahl n_{syn} der Ständerfeldwelle nach Gleichung 2.1 angegeben werden.

$$n_{\rm syn} = \frac{f}{p} \tag{2.1}$$

Das so entstandene Drehfeld induziert (Induktionsgesetz) Ströme im Läufer, welche ein sekundäres Magnetfeld (Durchflutungsgesetz) erzeugen. Die Rotorfeldwelle dreht bezüglich dem Ständer auch mit der Synchrondrehzahl n_{syn} , so dass sie zusammen mit der Ständerfeldwelle das resultierende

Luftspaltfeld erzeugt. Ist die Geometrie des Läufers bekannt, so kann über die *Lorentz*-Kraft das auf den Läufer wirkende Drehmoment berechnet werden. Das Drehmoment kann nur ungleich null sein, wenn der Läufer mit einer Drehzahl ungleich der Synchrondrehzahl dreht. Würde der Läufer mit Synchrondrehzahl drehen, würden keine Ströme in den Läuferstäben induziert, folglich wäre das Drehmoment null. Aufgrund von Lager- und Luftreibungsverlusten kann die ASM aus eigener Kraft nie die Synchrondrehzahl erreichen. Ein Maß für die Geschwindigkeitsdifferenz zwischen Ständerdrehfeld n_{syn} und dem Läufer n bietet der Schlupf s:

$$s = \frac{n_{\rm syn} - n}{n_{\rm syn}} \tag{2.2}$$

Aus diesem Wirkungsprinzip wurde die Bezeichnung "Asynchronmaschine" bzw. "Induktionsmaschine" hergeleitet. Den typischen Drehzahl-Drehmomentverlauf einer ASM gibt wieder.

2.2. Grundgleichungen und Ersatzschaltbild der Asynchronmaschine

Das Ersatzschaltbild (ESB) je Strang für eine Asynchronmaschine mit Einfach-Käfigläufer ist dem Abbildung 4 zu entnehmen. Die gestrichen dargestellten Größen sind dabei auf die Ständerseite bezogene Größen, sie sind mit dem Übersetzungsverhältnis zwischen Ständer- und Läuferwicklung der Maschine auf die Ständerseite umgerechnet. Beachten Sie, dass die Strom- und Spannungsübersetzungsverhältnisse nicht identisch sind wie bei der Asynchronmaschine mit Schleifringläufer, da hier die Anzahl der Stränge im Ständer $m_s = 3$ nicht der Anzahl der Stränge im Läufer $m_r = Q_r$ (Rotornutzahl) entspricht. Die Stromwärme-verluste des Ständers und des Läufers werden über die Widerstände R_s und R'_r berücksichtigt. Die Induktivitäten $L_{\sigma s}$ bzw. $L'_{\sigma r}$ berücksichtigen die Streuungen der Ständer- und Läuferseite; L_h ist die Hauptfeldinduktivität der Maschine, zu welcher man parallelgeschaltet einen Eisenverlustwiderstand im ESB ansetzen könnte, der aber hier vernachlässigt wird.

Die Berechnungsvorschriften sind folgenden Gleichungen zu entnehmen [2]:

Spannungsübersetzungsverhältnis:
$$\ddot{u}_{\rm U} = \frac{k_{\rm w,s} \cdot N_{\rm s}}{k_{\rm w,r} \cdot N_{\rm r}}$$
, $(N_{\rm r} = \frac{1}{2}, k_{\rm w,r} = 1)$ (2.3)

Stromübersetzungsverhältnis:
$$\ddot{u}_{\rm I} = \frac{k_{\rm w,s} \cdot N_{\rm s} \cdot m_{\rm s}}{k_{\rm w,r} \cdot N_{\rm r} \cdot m_{\rm r}}$$
, $(m_{\rm r} = Q_{\rm r})$ (2.4)

Läuferwiderstand:
$$R'_{\rm r} = \ddot{u}_{\rm I} \cdot \ddot{u}_{\rm U} \cdot R_{\rm r}$$
 (2.5)

Läuferinduktivität: $L'_{\sigma r} = \ddot{u}_{I} \cdot \ddot{u}_{U} \cdot L_{\sigma r}$ (2.6)

Läuferstrom:
$$I'_{\rm r} = \frac{I_{\rm r}}{\ddot{u}_{\rm I}}$$
 (2.7)

Die beiden Maschenumläufe in dem Ersatzschaltbild ergeben die bekannten Grundgleichungen der ASM:

$$\underline{U}_{s} = R_{s}\underline{I}_{s} + j\omega_{s}L_{\sigma s}\underline{I}_{s} + j\omega_{s}L_{h}(\underline{I}_{s} + \underline{I'}_{r}) = R_{s}\underline{I}_{s} + j\omega_{s}\underline{\Psi}_{s}$$
(2.8)

$$0 = \frac{R'_{\rm r}\underline{I'}_{\rm r}}{s} + j\omega_{\rm s}L'_{\sigma_{\rm r}}\underline{I'}_{\rm r} + j\omega_{\rm s}L_{\rm h}(\underline{I}_{\rm s} + \underline{I'}_{\rm r}) = \frac{R'_{\rm r}\underline{I'}_{\rm r}}{s} + j\omega_{\rm s}\underline{\Psi'}_{\rm r}$$
(2.9)

Abbildung 4: Vereinfachtes T-Ersatzschaltbild je Strang der Asynchronmaschine (ohne Ummagnetisierungsverluste und Stromverdrängung)

2.3. Stromverdrängung und Anlaufmomenterhöhung

Wird ein Leiter mit Gleichstrom durchflossen, so verteilt sich der Strom gleichmäßig über den Leiterquerschnitt. Der Widerstand des Leiters lässt sich leicht berechnen:

$$R_{=} = \frac{1}{\kappa} \frac{l}{A} \tag{2.10}$$

Anders sieht es bei Wechselstrom aus, denn hier erfolgt der Stromfluss bei zunehmender Frequenz immer mehr an der Leiteroberfläche, die nutzbare Leiterquerschnittsfläche *A* sinkt und der Widerstand nimmt somit zu. Dieser Effekt wird als Stromverdrängung bzw. Skineffekt bezeichnet. Man definiert die Eindringtiefe d_E (skin depth), in der die Feldamplitude um 37% ihres Randwertes gesunken ist:

$$d_E = \sqrt{\frac{1}{\pi \cdot \kappa \cdot \mu \cdot f}} \tag{2.11}$$

Als Beispiel sei hier die Eindringtiefe für Kupfer beif = 50 Hz berechnet:

$$d_{E} = \sqrt{\frac{1}{\pi \cdot 58 \cdot 10^{6} \frac{\text{S}}{\text{m}} \cdot 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}} \cdot 50 \text{Hz}}} = 0,9 \text{cm}$$
(2.12)

Nach Gleichung 2.13 kann dieser frequenzabhängige Rotorwiderstand zur Erhöhung des Anlaufmoments genutzt werden. Im Augenblick des Anlaufs (s = 1) sieht der Rotor eine Frequenz von $f_r = s \cdot f_s = 50$ Hz, aufgrund der Stromverdrängung wird der Widerstand größer und erhöht somit das Anlaufmoment. Im Nennbetrieb der Maschine liegt die Rotorfrequenz üblicherweise in einem Bereich von 1-5 Hz, sodass hier mit dem Gleichstromwiderstand $R_{=}$ gerechnet werden kann. Die Verkleinerung des nutzbaren Querschnitts bewirkt außerdem eine Verminderung des Streuflusses und damit der Streuinduktivität. Auf eine genaue Berechnung des frequenzabhängigen Widerstands und der Induktivität wird hier verzichtet, dem interessierten Leser sei die vertiefende Literatur empfohlen. [3], [4], [5]

$$M_1 = \frac{P_{\rm Cu,r}}{\Omega_{\rm syn}} \tag{2.13}$$

Eine andere Möglichkeit zur Beeinflussung der Anlaufeigenschaften bietet das Käfigmaterial, so dass beim Einsetzen eines Käfigs mit niedriger elektrischer Leitfähigkeit κ (Gleichung 2.10) wiederum ein höheres Anfahrmoment erreicht wird. Eine Zusammenstellung von verschiedenen Käfigformen und deren Einfluss auf den Anlaufstrom und das Anlaufmoment ist der Tabelle 2 zu entnehmen.

Stab- /Nutform	Läuferart	$\frac{M_1}{M_{\rm N}}$	$\frac{I_1}{I_N}$	
\bigcirc	Rundstabläufer (R)	≈ 0,20,5	≈ 35	<i>MIM</i> _N †
	Hochstabläufer (S)	≈ 1,11,6	≈ 67	3 2,5 2 1,5
	Doppelkäfigläufer (D) (Rund- /Rechteckstab)	≈ 22,6	≈ 25	
	Tropfennutläufer (T) (Druckgußläufer)	≈ 22,8	≈ 57	0 0,2 0,4 0,6 0,8 1 n/n _{syn}

Tabelle 2 Käfigformen und deren Einfluss auf Anfahr-Drehmoment und Strom [6]

Rundstabläufer (R) arbeiten aufgrund ihres geringen Stabdurchmessers nahezu ohne Stromverdrängung (Vergleiche Gl. 2.12). Das Betriebsverhalten ähnelt daher dem des Schleifringläufers ohne zusätzliche Läufervorwiderstände. Sie haben ein geringes Anlaufmoment bei einem verhältnismäßig hohen Anlaufstrom. Deutliche Vorteile sind das hohe Kippmoment und der geringe Nennschlupf, was die Verluste im Nennbetrieb minimiert.

In Stromverdrängungsläufern (S), wie z.B. dem Hochstabläufer, wird die einseitige Stromverdrängung zum Luftspalt hin zur Anlaufmomenterhöhung genutzt. Die Erhöhung des Rotorwiderstandes bewirkt zwar zusätzlich eine Verringerung des Anlaufstroms. Da aber gleichzeitig die Nutstreuinduktivität durch die Feldverdrängung zur Nutöffnung hin sinkt, erhöht sich der Anlaufstrom. Der Doppelkäfigläufer (D) weist im Allgemeinen das höchste Anlaufmoment auf, da der so genannte Anlaufkäfig (oberer Stab) eine niedrige Leitfähigkeit besitzt (z.B. Messing), der Betriebskäfig (unterer Stab) ist so gewählt, dass im Betrieb der Maschine geringe Stromwärmeverluste auftreten (Kupferkäfig). Im Nennbetrieb fließt somit der Läuferstrom hauptsächlich in den Unterstäben.

2.4. Drehzahlsteuerungsvarianten der ASM

Betrachtet man die Definition der Rotordrehzahl n des Asynchronmotors, so kann leicht erkannt werden, welche Drehzahlverstellungsmöglichkeiten bei der ASM existieren:

$$n = (1-s) \cdot \frac{f_s}{p} \tag{2.14}$$

2.4.1. Polumschaltbare Wicklungen

Als erste Möglichkeit bietet sich eine Veränderung der Polpaarzahl p an, die eine Veränderung der synchronen Drehzahl bewirkt und somit die Drehzahl der Maschine verändert. Dies kann durch Verwendung von mehreren Ständerwicklungen mit unterschiedlichen Polzahlen oder durch Umschaltung einer speziellen Ständerwicklung erreicht werden. Bei Schleifringläufermaschinen müsste die Wicklung sowohl im Ständer als auch im Rotor umgeschaltet werden, um gleiche Polzahlen zu ermöglichen; der Aufbau wäre unnötig kompliziert. Daher werden nur

polumschaltbare Wicklungen mit Kurzschlussläufer gebaut, da der Kurzschlusskäfig stets Felder mit der gleichen Polzahl erregt wie das ihn induzierende Ständerfeld aufweist. Polumschaltbare Wicklungen, die sich durchgesetzt haben, sind zum einen die *Dahlander*-Schaltung mit einem Polpaarzahlverhältnis von 1:2 und zum anderen die *Krebs*-Schaltung mit einem Polpaarzahlverhältnis von 2:3. [2]

2.4.2. Schlupfsteuerung

Eine weitere klassische Möglichkeit zur Drehzahlverstellung bietet die Steuerung des Schlupfs s. Da der Kippschlupf s_b proportional zum Läuferwiderstand R_r ist (2.15), kann dessen Änderung den Kippschlupf beeinflussen. Beim Schleifringläufer wird dies durch zusätzliche Läuferwiderstände erreicht.

$$s_{\rm b} = \frac{R_{\rm r}}{X_{\rm r}} \frac{\sqrt{R_{\rm s}^2 + X_{\rm s}^2}}{\sqrt{R_{\rm s}^2 + \sigma^2 X_{\rm s}^2}}$$
(2.15)

Beachten Sie, dass bei der Methode mit Läuferzusatzwiderständen nur der Kippschlupf vergrößert wird. Das Kippmoment M_b ist unabhängig von dem Läuferwiderstand (2.16) und auch die synchrone Drehzahl kann nicht beeinflusst werden. Ergebnis ist eine so genannte Scherung der M(n)-Kennlinien (Abbildung 5).

Abbildung 5: Momentverlauf mit verschiedenen Läuferwiderständen

$$M_{\rm b} = \frac{m_{\rm s} p U_{\rm s}^{2}}{2\omega_{\rm s}^{2}} \frac{1}{\frac{R_{\rm s}}{\omega_{\rm s}} + \frac{1}{(1-\sigma)\omega_{\rm s}X_{\rm s}}} \sqrt{(R_{\rm s}^{2} + X_{\rm s}^{2})(R_{\rm s}^{2} + \sigma^{2}X_{\rm s}^{2})}$$
(2.16)

Wesentlicher Nachteil dieser Methode ist der schlechte Wirkungsgrad, der durch die Stromwärmeverluste des Rotorwiderstands verursacht wird, daher hat sie heutzutage keine technische Bedeutung mehr. Eine andere Variante der Schlupfsteuerung bietet eine schlupfabhängige Läuferzusatzspannung, die im Spezialfall auch als untersynchrone Stromrichterkaskade oder als doppeltgespeiste Asynchronmaschine (z.B. bei Wind-generatoren) ausgeführt wird. [2], [6].

2.4.3. Veränderung der Ständerspannung

Möchte man beim Käfigläufer keine polumschaltbare Wicklung verwenden, so kann für einfache Drehzahlsteuerungen eine verstellbare Ständerspannung eingesetzt werden. Nach Gleichung 2.16 ist nämlich das Kippmoment $M_{\rm b}$ proportional zum Quadrat der Ständerspannung $U_{\rm s}^{2}$, so dass bei Halbierung der Ständerspannung nur noch ein Viertel des Kippmoments zur Verfügung steht. Auf den Kippschlupf wird hier keinen Einfluss genommen. Praktisch kann die Spannungsverstellung durch Stelltransformatoren oder durch Drehstromsteller (mit Verwendung von TRIAC-Leistungshalbleitern als Schalter) realisiert werden.

2.4.4. Veränderung der Ständerspannung und Frequenz (U/f-Kennliniensteuerung)

Letzte Stellgröße nach Gleichung 2.14 ist die Ständerfrequenz f_s . Wird diese jedoch verstellt, ändert sich auch das Kippmoment der Maschine, was nicht erwünscht ist. Weiterhin verändern sich die Blindwiderstände, was gleichbedeutend mit der Veränderung des Magnetisierungstroms I_m und somit auch der magnetischen Flussverkettung Ψ_s ist. Das Ergebnis ist zwar eine Parallelverschiebung der M(n)-Kennlinien, jedoch verkleinert sich das Kippmoment bei höheren Frequenzen gemäß Abbildung 6.

Abbildung 6: Momentverlauf bei Frequenzänderung

Daher ist das Ziel das Erreichen einer Drehzahlverstellung bei unverändertem Kippmoment. Wird in Gleichung 2.16 der Ständerstrangwiderstand R_s vernachlässigt, so ergibt sich:

$$M_{\rm b} \approx \frac{m_{\rm s} p U_{\rm s}^2}{2\omega_{\rm s}^2} \frac{(1-\sigma)}{L_{\rm s}\sigma}$$
(2.17)

Das Kippmoment $M_{\rm b} \sim \frac{U_{\rm s}^{\ 2}}{\omega_{\rm s}^{\ 2}}$ ist also proportional zum Verhältnis von Ständerspannung zu

Ständerfrequenz zum Quadrat, das heißt eine frequenzproportionale Änderung der Ständerspannung hält das Kippmoment konstant! Betrachtet man Gleichung 2.8, so ist bei erneuter Vernachlässigung des Ständerstrangwiderstands zu erkennen, dass die Einhaltung dieser Bedingung nach Gleichung 2.18 gleichzeitig die Ständerflussverkettung konstant hält. Somit wird die Maschine stets magnetisch optimal ausgenutzt.

$$\frac{U_{\rm s}}{\omega_{\rm s}} = \text{konst.} = \Psi_{\rm s} \tag{2.18}$$

Die M(n)-Kennlinien werden jetzt tatsächlich parallel verschoben! (Abbildung 7)

Abbildung 7: Momentkennlinien bei frequenzproportionaler Spannungsänderung für $R_s = 0$

Man beachte, dass die Vernachlässigung des Ständerstrangwiderstands R_s für kleine Frequenzen und somit kleine Drehzahlen nicht mehr zulässig ist. Denn mit sinkender Frequenz sinkt der Einfluss des induktiven Spannungsfalls in der Gleichung 2.8. Das Betriebsverhalten wird zunehmend vom Ständerwiderstand bestimmt. Anders formuliert bedeutet es, dass der Spannungsfall an dem Ständerstrangwiderstand die Ständerflussverkettung Ψ_s reduziert und somit das Drehmoment der Maschine sinken lässt. Eine aufschlussreiche Formel bietet Gleichung 2.19, darin ist die Flussverkettung direkt mit dem Moment verknüpft (* bedeutet: konjugiert komplex).

$$M_{e} = \frac{3}{2} p \cdot \operatorname{Im}\left(\underline{\Psi}_{s}^{*} \cdot \underline{I}_{s}\right) = -\frac{3}{2} p \cdot \operatorname{Im}\left(\left(\underline{\Psi}_{r}^{\prime}\right)^{*} \cdot \underline{I}_{r}^{\prime}\right)$$
(2.19)

Die M(n)-Kennlinien unter Berücksichtigung des Ständerstrangwiderstands gibt Abbildung 8 wieder. Man beachte, dass für kleine Drehzahlen das motorische Kippmoment zwar kleiner wird, das generatorisches Kippmoment jedoch wird größer!

Abbildung 8: Momentkennlinien bei frequenzproportionaler Spannungsänderung für $R_s \neq 0$

Die Maschine soll jedoch auch bei kleineren Frequenzen maximal mögliches Drehmoment für Beschleunigungen bzw. Abbremsungen entwickeln. Der Spannungsfall an dem Ständerwiderstand

muss kompensiert werden. Da der Ständerwiderstand messbar ist, kann nach einer Messung des Ständerstroms eine Spannungsanhebung durchgeführt werden. Die zugehörige Spannung bei niedrigen Frequenzen heißt "Boostspannung". [2]

Abbildung 9: U/ fKennlinie für konstante Flüsse

Ist die Nennspannung $U_{\rm N}$ der Maschine erreicht, so darf diese nicht weiterhin mit der Frequenz gesteigert werden, da dies die Isolation belasten würde. Des Weiteren wird die Spannungsgrenze des Umrichters erreicht, eine weitere Erhöhung der Spannung würde die Leistungshalbleiter zerstören. Daher wird oberhalb der Nennfrequenz $f_{\rm N}$ die Spannung konstant gehalten. Gemäß 2.18 nimmt die Flussverkettung mit $\Psi_{\rm s} \sim \frac{1}{f_{\rm s}}$ ab. Das Kippmoment sinkt mit $M_{\rm b} \sim \frac{1}{f_{\rm s}^2}$ (2.17). Die Maschine arbeitet im Feldschwächbetrieb (Konstantleistungsbetrieb). Die Läuferkippfrequenz bleibt bei $R_{\rm s} = 0$ konstant, daher sinkt die Neigung der M(n)-Kennlinie. Der Arbeitspunkt, bei dem von

Konstantmomentbetrieb in den Konstantleistungsbetrieb gewechselt wird, heißt Typenpunkt (Abbildung 9). Die M(n)-Kennlinien für den gesamten Arbeitsbereich der Asynchronmaschine zeigt Abbildung 10.

Abbildung 10: M(n)-Kennlinien im Konstantmomentbetrieb und im Konstantleistungsbetrieb [6]

Eine Zusammenstellung der möglichen Verfahren zur Verstellung der Drehzahl bei Asynchronmaschinen gibt Tabelle 3 wieder.

Läuferart	Steuerverfahren	Veränderung der Momentkennlinie	Eigenschaften
Käfigläufer	Polumschaltung (z.B. Dahlander)		Verstellung in Stufen möglich, verlustarm
Käfigläufer oder Schleifringläuf er	Änderung der Ständerspannung (Drehstromsteller oder Stelltransformator)		Verstellung stufenlos möglich, verlustbehaftet
Schleifringläuf er	Läufervorwiderstände		Verstellung in Stufen möglich, verlustbehaftet
Schleifringläuf er	Untersynchrone Stromrichterkaskade	$M = \frac{1}{2} + $	Verstellung stetig möglich, verlustarm, <i>a:</i> Steuerwinkel des netzseitigen Wechselrichters
Käfigläufer oder Schleifringläuf er	Frequenzproportional e Spannungsänderung	M M M M M M M M M M M M M M M M M M M	Verstellung stetig möglich, verlustarm

Tabelle 3: Möglichkeiten zur Verstellung der Drehzahl bei Asynchronmaschinen [7], [8], [9]

2.5. Feldorientierte Regelung

Das im vorherigen Kapitel vorgestellte Verfahren der *U/f*-Kennliniensteuerung ändert bei Variation der Ständerspannung und der Frequenz den Gesamtstrom der ASM und damit stets den Hauptfluss und das Moment. Anmerkung: Im Folgenden wird die Flussverkettung Ψ auch kurz als "Fluss" bezeichnet. Die Kurzschlusszeitkonstante $T_1 = \frac{\sigma L_1}{R_1}$ der ASM ist ein Maß für Laststromänderungsgeschwindigkeiten und ist wesentlich geringer als die Hauptfeldzeitkonstante

 $T_2 = \frac{L_{\rm h}}{R_{\rm l}}$. Ziel ist es daher, einen <u>drehmomentbildenden</u> Strom $i_{\rm q}$ und einen <u>flussbildenden</u> Strom $i_{\rm d}$ zu definieren, die wie bei der Gleichstrommaschine (GM) unabhängig voneinander eingestellt werden können. So wird eine hohe Regeldynamik erreicht, da sich $i_{\rm q}$ mit der kurzen Zeitkonstante T_1 und $i_{\rm d}$ mit der langen Zeitkonstante T_2 ändert. Durch gezieltes Verstellen von $i_{\rm q}$ kann somit das Drehmoment rasch geändert werden. Die Asynchronmaschine weist aber im Vergleich zur Gleichstrommaschine ein wesentlich komplexeres Steuerverhalten auf (siehe Anhang). Bei der Gleichstrommaschine mit Fremderregung können das Moment ($M \sim I_{\rm a}$) und die Flussverkettung ($\Psi \sim I_f$) direkt getrennt voneinander geregelt werden, und somit sind Lastmomentsprünge schnell und präzise ausregelbar. Zweckmäßig ist es daher, die ASM mathematisch so einfach wie möglich zu beschreiben und die Regelung darauf aufbauend auszulegen. Eine wesentliche Grundlage dabei bildet die Darstellung von Wechselgrößen in Raumzeigern in der "komplexen" Querschnittsebene der Maschine:

 \circ Stellt man sich einen Schnitt durch die Maschinenebene vor, so kann in Richtung des Feldmaximums ein Flussraumzeiger $\underline{\Psi}$ gelegt werden. Dieser setzt sich aus der Summe der Flussraumzeiger der einzelnen Wicklungsstränge (Phasen) zusammen und dreht sich bezüglich des Stators mit der Synchrongeschwindigkeit.

Abbildung 11: Querschnitt durch die Maschinenebene, sinusförmig verteiltes *B*-Feld im Luftspalt und Orientierung des zugehörigen Flussraumzeigers $\underline{\Psi}$

 \circ Der durch die drei Stranggrößen entstandene Flussraumzeiger $\underline{\Psi}$ kann durch ein orthogonales Koordinatensystem dargestellt werden. Dazu wird eine 3 zu 2-Achsenkoordinatentransformation, die so genannte *Clarke*-Transformation, durchgeführt, die in Gleichung 2.20 am Beispiel der Flussverkettung Ψ dargestellt ist.

$$\circ \quad Clarke-Transformation: \qquad \begin{pmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{pmatrix} = \frac{2}{3} \cdot \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & +\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \cdot \begin{pmatrix} \Psi_{U} \\ \Psi_{V} \\ \Psi_{W} \end{pmatrix}$$
(2.20)

Abbildung 12: Clarke-Transformation am Beispiel des Flussraumzeigers <u>Y</u>

Dadurch ist ein orthogonales zeitvariantes System geschaffen. Ziel ist es aber, mit dem Flussraumzeiger zu rotieren und damit ein zeitinvariantes System zu bilden.

Wenn das so entstandene rechtwinklige Koordinatensystem mit dem Drehoperator $e^{j\gamma_1(t)}$ (*Park*-Transformation) gedreht wird, kann es, wenn der Winkel zwischen dem ständerfesten Koordinatensystem $\alpha\beta$ und dem mit dem Flussraumzeiger $\underline{\Psi}$ rotierenden dq-System bekannt ist, mit dem Flussraumzeiger mitrotieren, so dass ein zeitinvariantes System geschaffen ist. Der Flussraumzeiger $\underline{\Psi}$ steht somit bezüglich des dq-Systems still.

Abbildung 13: *Park*-Transformation am Beispiel des Flussraumzeigers <u></u>

Beispiel:

Wird der Ständerflussraumzeiger $\underline{\Psi}_s$ in die d-Achse des dq-Systems gelegt ($\underline{\Psi}_s = \underline{\Psi}_d$), so ist im Einklang mit Gleichung 2.19, da nur zueinander senkrechte Strom- und Flussraumzeiger einen Beitrag zum Drehmoment liefern, nur der q-Stromraumzeiger \underline{I}_{sq} drehmomentbildend! Der d-Stromraumzeiger \underline{I}_{sd} ist ausschließlich für die Flussbildung zuständig.

..... Auf eine tiefergehende Erklärung der Reglungsmaßnahmen sei hier bewusst verzichtet, da sie den Rahmen dieser Anleitung sprengen würden (siehe Vorlesung: Control of Drives). Daher wird hier nur das Blockschaltbild (Abbildung 14) vorgestellt und kurz die wichtigsten Funktionsblöcke erklärt. Dabei werden Sollwerte mit einem * gekennzeichnet, die Signalflussrichtung ist der jeweiligen Pfeilrichtung zu entnehmen. Zunächst wird in den drei Strängen des Motors der Strom gemessen und durch eine Park-Transformation in das dq-System übergeführt. Die so entstandenen Istwerte der Stromkomponenten i_d und i_q werden zur Weiterverarbeitung zum einen den unterlagerten Stromregelkreisen zugeführt und zum anderen dem Feldmodell der Maschine. Wenn nun die Drehzahl n und der Drehwinkel γ_m des Rotors aus den Drehgebersignalen erfasst werden und auch dem Feldmodell der Maschine als Istwert zugeführt werden, kann hieraus der Winkel zwischen dem ständerflussorientierten dq-Koordinatensystem und dem ständerfesten-Koordinatensystem errechnet werden, der vor allem für die Park-Transformation gebraucht wird. Den Sollwert der q-Stromregelung und damit der Regelung des Moments liefert der überlagerte

Drehzahlregelkreis. Um unzulässig hohe Ströme zu vermeiden, wird der Sollwert auf einen bestimmten Wert begrenzt. Sind alle Magnetisierungsparameter, vor allem Hauptfeldinduktivität $L_{\rm h}$ der Maschine bekannt, so kann der Fluss mittels Modellbildung der Maschine errechnet werden. Wird diesem Modell der Istwert der Drehzahl n angegeben, so kann hieraus ermittelt werden, ob sich die Maschine im Grunddrehzahlbereich oder im Feldschwächbetrieb befindet und daraus kann der entsprechende Sollfluss bestimmt werden. Ausgangsgröße der Flussteuerung ist somit der zum q-Strom um 90° verdrehte d-Strom der Maschine, der flussbildend ist. Ausgangsgrößen der beiden Stromregler sind die Sollspannungen in d- und q-Richtung $u_{\rm d}^*$ und $u_{\rm q}^*$, die dann in real existierende Sollspannungen $u_{\rm U}$, $u_{\rm V}$ und $u_{\rm W}$ über den Pulsweitenmodulator umgewandelt werden. Diese Sollspannungen $u_{\rm U}^*$, $u_{\rm V}^*$ und $u_{\rm W}^*$ dienen dann zur pulsweitenmodulierten Ansteuerung der Transistoren im Umrichter, was im folgenden Kapitel näher beschrieben wird.

Abbildung 14: Blockschaltbild der feldorientierten Regelung [10]

3. Frequenzumrichter

3.1. Aufbau des Frequenzumrichters

Der Frequenzumrichter ist in der Regel ein Spannungszwischenkreisumrichter und besteht aus zwei grundlegenden leistungselektronischen Schaltungen. Zum einen befindet sich auf der Netzseite ein netzgeführter Gleichrichter, welcher die Wechselgrößen des Netzes in Gleichgrößen umwandelt, daher spricht man auch von einem AC-DC-Wandler (alternate current to direct current) und zum

anderen befindet sich auf der Maschinenseite ein selbstgeführter Wechselrichter (DC-AC-Wandler), welcher die Gleichgrößen in Wechselgrößen umwandelt. Ein weiterer Grundbaustein des Frequenzumrichters ist der Zwischenkreis, der für die Zwischenspeicherung der Energie erforderlich ist. Als Zwischenspeichermedium werden hier Kondensatoren verwendet. Sie sind so bemessen, dass die Spannung stark geglättet wird und als Gleichgröße betrachtet werden kann, so dass eine Entkopplung der beiden Brücken von AC-DC-Wandler und DC-AC-Wandler erfolgt. Der Vollständigkeit halber sei erwähnt, dass als Speichermedium prinzipiell auch Spulen (Induktivitäten), beim so genannten Stromzwischenkreisumrichter verwendet werden können, die aber nur bei bestimmten Antriebsvarianten im höheren Leistungsbereich eingesetzt werden. Soll die Maschine abgebremst werden, muss der maschinenseitige Stromrichter im Gleichrichterbetrieb arbeiten. Die Energie wird in einem am Zwischenkreis angebrachten Bremswiderstand verheizt, wenn der netzseitige AC-DC-Wandler nicht rückspeisefähig ist (wie z.B. der hier vorgestellte Dioden-Gleichrichter). Der Gleichrichter ist als B2- (bzw. B6-) Brücke aufgebaut [11], [12]. Er besteht aus vier (bzw. sechs) Dioden, die mit natürlicher, also netzgeführter Kommutierung arbeiten. Er ist somit nicht steuerbar und liefert i.A. eine konstante Zwischenkreisspannung U_{d} . Dieser fremdgeführte Stromrichter nimmt induktive Blindleistung auf, die so genannte Kommutierungsblindleistung. Der Wechselrichter (DC-AC-Wandler) besteht aus sechs abschaltbaren Leistungshalbleitern (zumeist IGBT's) mit antiparallelen Freilaufdioden, welche den Strom führen, wenn z.B. bei positiver Ausgangsspannung ein negativer Strom in diesem Strang geführt werden muss.

Abbildung 15: Aufbau des Frequenzumrichters

Um die Ausgangsspannungen des Wechselrichters bestimmen zu können, ist es sinnvoll, einen virtuellen Zwischenkreismittelpunkt "0" einzuführen (Abbildung 15). Damit können die Spannungen u_{U0} , u_{V0} und u_{W0} nur die zwei Werte $+U_d/2$ und $-U_d/2$ annehmen. Die symmetrische Drehstromlast ($u_{US}+u_{VS}+u_{WS}=0$, $i_U+i_V+i_W=0$), kann hingegen mehrere Werte annehmen, und es ergeben sich folgende Berechnungsvorschriften [11], [12].

$$u_{US} = +\frac{2}{3}u_{U0} - \frac{1}{3}u_{V0} - \frac{1}{3}u_{W0}$$
(3.1)

$$u_{VS} = -\frac{1}{3}u_{U0} + \frac{2}{3}u_{V0} - \frac{1}{3}u_{W0}$$
(3.2)

$$u_{WS} = -\frac{1}{3}u_{U0} - \frac{1}{3}u_{V0} + \frac{2}{3}u_{W0}$$
(3.3)

Zu beachten ist, dass der Zwischenkreismittelpunkt 0 und der Sternpunkt S der Last nicht das gleiche Potential aufweisen, so dass diese (falls zugänglich) nicht miteinander kurzgeschlossen werden dürfen:

$$u_{S0} = \frac{1}{3} \left(u_{U0} + u_{V0} + u_{W0} \right) \neq 0 \tag{3.4}$$

3.2. Ansteuerung der Schalter

3.2.1. Unterschwingungsverfahren

Prinzipiell gibt es für Umrichter mit konstanter Zwischenkreisspannung U_d verschiedene Verfahren, um die Amplitude \hat{U}_s und Frequenz f_s der Ausgangsspannung beliebig einstellen zu können. Allen Verfahren ist gemeinsam, dass sie die konstante Zwischenkreisspannung U_d in einzelne Spannungsblöcke zerhacken ("choppen"), und mit positiver oder negativer Polarität an die Motorwicklungsklemmen legen. Die Anzahl der Spannungsblöcke je Zeiteinheit und die Dauer der Spannungsblöcke und der spannungslosen Pausen dazwischen legt die Spannungskurvenform der Ausgangsspannung fest. Die Fourier-Grundschwingung dieses Spannungsverlaufs ist die nutzbare Spannung. Ihre Amplitude \hat{U}_s und ihre Frequenz f_s legen den Fluss $\underline{\Psi}_s$ in der Maschine fest. Verfahren zur Erzeugung dieser Pulsweitenmodulation (PWM) sind unter anderem das Unterschwingungsverfahren und die Raumzeigermodulation.

sinusbewerte Verständnis soll hier eine **PWM** nach dem Zum Prinzip des Unterschwingungsverfahrens erklärt werden (Abbildung 17). Dabei wird eine feste Dreiecksspannung u_{dr} mit drei zueinander um 120° phasenverschobenen Sinus-Steuer-Spannungen $(u_{\text{steuer,U}}/u_{\text{steuer,W}})$ verglichen. Solange die jeweilige Steuerspannung größer als die Dreiecksspannung ist, muss im betreffenden Strang das obere Ventil leitend sein, im umgekehrten Fall ist das untere Ventil leitend. Damit entsteht an den Motorklemmen entweder die Spannung \pm $U_{\rm d}$ oder Null, also die o.g. Spannungsblöcke in sinusbewerteter Breite. Somit ist auch gleichzeitig eine Verriegelung zwischen den oberen und unteren Schaltern der Stränge geschaffen, die einen Kurzschluss des Zwischenkreises bei gleichzeitigem Einschalten beider Schalter verhindert.

3.2.2. Synchrone und asynchrone Taktung

a) <u>Synchrone Taktung</u>

Zu beachten ist, dass die Frequenz der Dreieckspannung f_{dr} (siehe Abbildung 17) ein ungerades ganzzahliges Vielfaches der Grundschwingungs-Frequenz $f_{s,1}$ sein muss, um dominante Oberschwingungen vollständig zu unterdrücken. Innerhalb der Periodendauer $1/f_{dr}$ findet ein Schaltspiel (Ein- und Ausschalten) statt, daher ist die Schaltfrequenz der Schalter f_{schalt} gleich der Frequenz der Dreieckspannung f_{dr} . Weiterhin sollten die Nulldurchgänge jeder Steuerspannung mit den Nulldurchgängen der Dreieckspannung so zusammenfallen, dass beide dort entgegengesetzte Steigungen haben. Für die drei Steuerspannungen sind diese Voraussetzungen aus der *Fourier*-Analyse nur erfüllbar, wenn das Frequenzverhältnis $m_f = f_{schalt}/f_{s,1}$ ein ganzes Vielfaches von drei ist:

$$m_{\rm f} = (2n+1) \cdot 3 = \frac{f_{\rm schalt}}{f_{\rm s,1}}$$
 (mit $n = 0, 1, 2, 3, ...$) (3.5)

Man spricht dann von synchroner Taktung. [11], [12], [13]

b) Asynchrone Taktung

Bei der asynchronen Taktung wird mit einer festen Schaltfrequenz f_{schalt} der Transistoren gearbeitet. Das Frequenzverhältnis m_{f} ist wegen der veränderlichen Grundschwingung i.a. nicht mehr ganzzahlig. Es treten daher bei der *Fourier*-Analyse der Ausgangsspannung neben der erwünschten Grundschwingung im Vergleich zur synchronen Taktung Ober- und Unterschwingungen auf. Ist aber die Schaltfrequenz sehr viel größer als die Grundschwingungsfrequenz, so sind nur die Oberschwingungen mit Frequenzen im Bereich der Schaltfrequenz, der doppelten Schaltfrequenz usw. wesentlich. Die Amplituden der anderen Spannungsharmonischen sind klein.

usw. wesenchen. Die Amplituden der anderen Spannungsnarmonischen sind klein.

<u>Beispiel</u>:

 $f_{\text{schalt}} = 8 \text{kHz}, f_{\text{s,1,max}} = 300 \text{Hz}$

$$\Rightarrow m_{\rm f} = 26,67$$

Daher wird bei großen Umrichtern mit i.a. niedriger Schaltfrequenz f_{schalt} < 1kHz eher die synchrone Taktung, bei kleineren Umrichtern und i.a. hoher Schaltfrequenz die asynchrone Taktung verwendet.

3.2.3. Steuerbereiche der Stromrichter

Das Verhältnis der Amplituden von Steuerspannung und Dreieckspannung wird als Modulationsgrad bzw. Aussteuerung m_a bezeichnet:

$$m_{\rm a} = \frac{\hat{U}_{\rm steuer}}{\hat{U}_{\rm dr}} \tag{3.6}$$

Die Spannungsamplitude der Grundschwingung $\hat{U}_{US,1}$ ist diesem Modulationsgrad bei gegebener Zwischenkreisspannung proportional (Abbildung 17):

$$m_{\rm a} = \frac{\hat{U}_{\rm US,1}}{U_{\rm d}/2}$$
(3.7)

Für die Leiter – Leiterspannung der Grundschwingung gilt somit:

$$\hat{U}_{\rm UV,1} = \hat{U}_{\rm LL,1} = \frac{\sqrt{3}}{2} U_{\rm d} m_{\rm a}$$
(3.8)

Abbildung 16: Steuerbereiche beim 3-phasigen Wechselrichter [11], [12]

In Abbildung 17 ist das beschriebene Verfahren für ein Frequenzverhältnis von $m_f = 3$ und ein Amplitudenverhältnis von $m_a = 0,7$ gezeichnet. Subtrahiert man jeweils die Spannungen u_{U0} , u_{V0} und u_{W0} , so ergeben sich die drei Leiter–Spannungen, von denen die Spannung $u_{UV} = u_{U0}-u_{V0}$ gezeichnet ist.

3.3. Oberschwingungen

Neben der gewünschten Grundschwingung enthält die Ausgangspannung auch (unerwünschte) Oberschwingungen. Für den linearen Steuerbereich treten diese bei der Schaltfrequenz und ganzen Vielfachen davon auf, sowie den dazu gehörigen Seitenbändern. Mit wachsender Aussteuerung wächst auch die Zahl der noch relevanten Amplituden in den Seitenbändern. Da die Spannung nicht sinusförmig ist, ist demzufolge auch der Strom nicht sinusförmig, er ist oberschwingungsbehaftet. Diese Oberschwingungen tragen nicht zur Drehmomentbildung bei, verursachen jedoch Verluste. Ziel ist es, diese Oberschwingungen so gering wie möglich zu halten um somit die zusätzlichen Belastungen zu begrenzen. Hauptsächlich wird der Strom durch die Induktivitäten, vor allem der Streuinduktivität, geglättet. Daher ist es erstrebenswert, die Schaltfrequenzen so groß wie möglich zu wählen, es muss aber beachtet werden, dass größere Schaltfrequenzen auch erhöhte Schaltverluste in den Transistoren verursachen, so dass ein Kompromiss gefunden werden muss.

4. Versuchsaufbau und Inbetriebnahme

4.1. Versuchsaufbau

Der Versuch ist gemäß Abbildung 36 aufgebaut. Die Asynchronmaschine (ASM) treibt eine angekuppelte, fremderregte Gleichstrommaschine (GM) an. Die ASM kann wahlweise am Sinusnetz bzw. am Umrichter betrieben werden. Dazu ist der Umschalter US1 auf die jeweilige Position zu stellen. Die GM wird als Belastungsmaschine verwendet, arbeitet als Generator und führt die Leistung durch einen Konverter zurück ins Netz. Verschiedene Belastungen können mit dem Drehmomentregler auf der Fernbedienung eingestellt werden. (Zuschalten über Freigabe auf der Fernbedienung möglich).

<u>Achtung:</u> Wird der Umschalter US1 auf Sinusbetrieb gestellt, läuft die ASM sofort an, falls die Versorgung S1 eingeschaltet ist!

4.2. Erfassung der Messgrößen

4.2.1. Spannungsmessungen

- Es sollen:
 - die Umrichtereingangsspannung u_{netz} und
 - die verkettete Ständerspannung *u*_{ASM} der ASM

Oszilloskop dargestellt und auch wahlweise mit Dreheisenmessgeräten bzw. am Digitalvoltmetern gemessen werden. Da der Messbereich des Oszilloskops nicht für Spannungen im Bereich von über 230V ausgelegt ist, müssen diese durch einen geeigneten Teiler verkleinert werden. Das Oszilloskop benötigt weiterhin auf Masse bezogene Spannungen. Potenzialdifferenzen zwischen zwei Punkten müssen z.B. durch eine Differenzbildung mit einem Differenzverstärker in eine massebezogene Spannung umgesetzt werden. Außerdem bietet der Differenzverstärker den Vorteil der Potentialtrennung. Jedem Eingang des Differenzverstärkers ist eine 2A-Sicherung vorzuschalten. Notieren Sie sich vor Versuchsbeginn das Teilerverhältnis!

4.2.2. Strommessungen

• Es können 2 Ströme am Oszilloskop dargestellt und auch wahlweise mit Dreheisenmessgeräten bzw. Digitalvoltmetern gemessen werden (fertig verschaltet):

- Umrichtereingangsstrom i_{Netz}
- Außenleiterstrom i_{ASM} der ASM (in Strang U)

Die Messung erfolgt mit Stromwandlern der Firma LEM. Diese haben den Vorteil einer galvanisch entkoppelten Messung und arbeiten nach dem Kompensationswandlerprinzip. Auf der Sekundärseite des Stromwandlers wird an einem Präzisionswiderstand R_{mess} der Spannungsfall gemessen, der proportional zum Primärstrom i_{prim} ist. Die Spannungs-versorgung der Wandler erfolgt über ein externes Netzteil ($\pm 15V$ / bipolar). Notieren Sie sich vor

Versuchsbeginn das Übersetzungsverhältnis \ddot{u}_{I} des Stromwandlers und die Größe des Messwiderstandes R_{mess} , beachten Sie dabei die Messanordnung bei Ihrer Auswertung!

4.2.3. Drehzahlmessung

Die Drehzahl wird mit Hilfe eines digitalen optischen Drehgebers (Inkrementalgeber) gemessen, dessen Signal sowohl dem Umrichter als auch dem Universalzähler zur Verfügung gestellt wird. Die Versorgung des Drehgebers erfolgt über den Umrichter (+24V/ unipolar), der daher immer, auch bei den Messungen im Sinusbetrieb, eingeschaltet bleiben muss.

Funktionsprinzip des Drehgebers:

Drehgeber arbeitet photoelektrischen Der nach dem Prinzip der Abtastung. Bei inkrementalen Drehgebern befindet sich auf einer Drehscheibe (Teilscheibe) ein Radialgitter aus Strichen und Lücken, die so genannte Inkrementalspur. Auf einer zweiten zusätzlichen Spur befindet sich eine Referenzmarke, von der ausgehend die Messsignale aufaddiert werden. Auf der einen Seite der Drehscheibe befindet sich eine Lichtquelle (Leuchtdiode, LED), die nach Fokussierung (durch den Kondensor) eine Abtastplatte, die ihrerseits fest angeordnet ist, bestrahlt. Auf der Abtastplatte befinden sich vier Felder, die jeweils um ein Viertel der Teilungsperiode (= 360°/Strichzahl) zueinander versetzt sind. Auf einem weiteren Feld befindet sich die Referenzmarkenteilung. Auf der gegenüberliegenden Seite zur Lichtquelle befinden sich Photoelemente, die die Helligkeitsschwankungen (Hell/Dunkel) bei Drehung der Scheibe in elektrische Impulse umsetzen (Moiré-Effekt).

Abbildung 18: Spannungsmessungen mit dem Oszilloskop

Abbildung 19: Strommessungen mit dem Oszilloskop

Abbildung 20: Prinzip der photoelektrischen Abtastung

Abbildung 21: Inkrementsignale HTL

Die Photoelemente erzeugen sinusförmige Stromsignale, die dann durch eine Folgeelektronik digitalisiert werden. Aus den so gewonnenen HTL-Rechteckimpulsen (HTL: Hochvolt-Transistor-Logik) kann eine genaue Zuordnung der Drehzahl und der Drehrichtung erfolgen. Dazu stehen zwei Ausgangssignale u_{a1} und u_{a2} , die um 90° elektrisch zueinander versetzt sind, zur Verfügung sowie ein Referenzimpuls u_{a0} , der mit den Inkrementalsignalen verknüpft ist. Die Spuren u_{a1} und u_{a2} liefern im Versuch jeweils $1024 = 2^{10}$ Impulse pro Umdrehung. Die so genannte "Nullspur" u_{a0} liefert einen Impuls je Umdrehung und dient zur Positionserkennung des Motorläufers. Der Impuls der Nullspur dient als Referenzpunkt.

Der Vollständigkeit halber sei erwähnt, dass auch so genannte absolute Drehgeber zum Einsatz kommen. Bei diesen ist die Drehscheibe nach einem bestimmten Code, wie z.B. dem Dual-Code oder dem Gray-Code (V-Abtastung siehe Messtechnik I), codiert, so dass jede Position eindeutig bestimmt ist. Vorteilhaft ist bei diesem Verfahren, dass kein Referenzpunkt von Nöten ist. Nachteilig ist der höhere Aufwand, der mit der Codierung und Decodierung verbunden ist.

4.2.4. Drehmomentmessung

Die Drehmomenterfassung erfolgt nicht mit einer Drehmomentmesswelle, sondern sie wird indirekt über die Belastungsmaschine bestimmt. Allgemein gilt für die Gleichstrommaschine:

$$M_{\rm e} = p \cdot \Psi \cdot I_{\rm a} \tag{4.1}$$

Der Faktor $p \cdot \Psi$ ist die Flussverkettung der Ankerwicklung mit dem Ständerhauptfluss und kann als konstante Größe aufgefasst werden, solange die Gleichstrommaschine mit konstanter Erregung und somit konstantem Fluss betrieben wird, denn die Flussverkettung der GM ist dem Erregerstrom proportional $\Psi \sim I_f$. Daher ist während des Versuchs stets der Erregerstrom von $I_f = 0,25A$ zu kontrollieren und gegebenenfalls zu korrigieren. Zur Bestimmung des Drehmoments, welches an der Welle zur Verfügung steht und somit von der ASM aufgebracht werden muss, gehen Sie folgendermaßen vor:

Allgemein treten bei der GM folgende Verluste auf: [16]

- Stromwärmeverluste im Ankerkreis P_{Cu.a}
- Stromwärmeverluste im Erregerkreis P_{Cu,f}
- Bürstenübergangsverluste $P_{\rm b}$
- Ummagnetisierungsverluste $P_{\rm Fe}$
- Reibungsverluste (Lager- und Luftreibung sowie Bürstenreibung) $P_{\rm R}$
- Zusatzverluste (z.B. Stromverdrängung) P_Z (werden vernachlässigt)

Möchte man im Generatorbetrieb der GM die mechanisch zugeführte Leistung $P_{\rm m}$ (4.2) und damit das Drehmoment *M* der ASM aus den elektrisch gemessenen Daten bestimmen, müssen alle Verluste bekannt sein. Die Berechnungsvorschrift für die mechanisch zugeführte Leistung ist der Gleichung 4.2 zu entnehmen. Darin ist zu beachten, dass $R_{\rm a}$ den gesamten im Anker wirkenden Widerstand, somit die Summe aus Ankerwiderstand und Wendepolwiderstand, repräsentiert. Die Verluste in Erregerkreis müssen nicht berücksichtigt werden (wieso?).

$$P_{\rm m} = U_{\rm a} \cdot I_{\rm a} + R_{\rm a} \cdot I_{\rm a}^2 + P_{\rm Fe+R} + P_{\rm b}$$
(4.2)

Aus der gemessenen Drehzahl n kann dann das Drehmoment M aus der bekannten Gleichung 4.3 bestimmt werden.

$$M = \frac{P_{\rm m}}{\Omega_{\rm m}}, \ \Omega_{\rm m} = 2\pi n \tag{4.3}$$

Die Widerstände im Ankerkreis wurden im Kaltzustand der Maschine bei 20°C gemessen und müssen daher bei der Berechnung des Drehmoments auf den betriebswarmen Wert nach Gleichung 4.4 umgerechnet werden. Dabei ist der Kehrwert des Temperaturkoeffizienten für Kupfer 235°C (Aluminium 225°C). Laut VDE 0530 Teil I ist die Bezugstemperatur für eine Maschine der Wärmeklasse E 75°C.

$$\frac{R_{\text{warm}}}{R_{\text{kalt}}} = \frac{235^{\circ}C + 9_{\text{warm}}}{235^{\circ}C + 9_{\text{kalt}}}$$
(4.4)

0.57
0,37

Tabelle 4: Widerstände im Ankerkreis

Der Bürstenspannungsabfall $U_{\rm b}$ kann als konstant angenommen werden, bei Kohlebürsten 1V pro Bürste, das heißt 2V bei zwei in Reihe geschalteten Bürsten (Plus- und Minuspol).

$$P_{\rm b} = 2 \cdot U_{\rm b} \cdot I_{\rm b} \tag{4.5}$$

Die Ummagnetisierungsverluste $P_{\text{Fe}}(n, I_{\text{f}})$ und die Reibungsverluste $P_{\text{R}}(n)$ wurden vor Versuchsbeginn in einem Leerlaufversuch im Motorbetrieb für verschiedene Drehzahlen bzw. Erregerströme ermittelt. Dazu wurde die aufgenommene Leistung P_0 (über Spannung und Strom) für bestimmte Drehzahlen bestimmt. Abzüglich der Stromwärmeverluste im Anker und der Bürstenübergangsverluste ergeben sich die Ummagnetisierungs- und Reibungsverluste. Da im Versuch ein konstanter Erregerstrom eingestellt werden soll, ist lediglich die Abhängigkeit der Ummagnetisierungs- und Reibungsverluste von der Drehzahl relevant (Abbildung 22). Sie können die benötigten Punkte im Diagramm ablesen oder die dazugehörige Näherungsfunktion 2. Ordnung (vgl. 4.6) verwenden, dabei ist die Drehzahl in 1/min einzusetzen!

$$P_{\text{Re+R}} = P_0 - P_{\text{Cu,a}} - P_b \cong \left(\left(\frac{n}{\min^{-1}} \right)^2 \cdot 9 \cdot 10^{-6} + \left(\frac{n}{\min^{-1}} \right) \cdot 0,02 \right) \text{W}$$
(4.6)

Abbildung 22: Ummagnetisierungs- und Reibungsverluste P_{Fe+R} der GM in Abhängigkeit der Betriebsdrehzahl *n* bei konstanter Erregung $I_{f} = 0,25A$

4.3. Inbetriebnahme

- 1. Alle Schalter (S1, S2, S3) sind auf Position "0" zu stellen.
- 2. Umschalter US1 sind auf Position "0" zu stellen.
- **3.** Überprüfen Sie mit Ihrem Betreuer die feste Verkabelung nach Abbildung 36. Diese Kabel sind mit violetten Schildern gekennzeichnet und dürfen beim Versuchsabbau **nicht entfernt werden!**
- 4. Der Versuchsstand ist bereits entsprechend Abbildung 36 verkabelt.
- 5. Schließen Sie den Differenzverstärker (Anschluss: u_{Netz} und u_{ASM}), das Oszilloskop (Messung: u_{Netz} , u_{ASM} , i_{Netz} und i_{ASM}) und das Multimeter (Stromwandler: Ausgang 1 für I_{ASM}) an.
- 6. Ihr Betreuer hat die Einspeisungen von Transformator I und Transformator III einzuschalten.
- 7. Einschalten der benötigten Geräte: Oszilloskop, PC, Netzteil, Differenzverstärker, Universalzähler, Umrichter (Schalter S2), Umrichterfreigabe "gesperrt"!
- 8. Inbetriebnahme abgeschlossen.

Notieren Sie sich das Typenschild der ASM, das Übersetzungsverhältnis \ddot{u}_{I} des Stromwandlers und die Größe des Messwiderstandes R_{mess} , beachten Sie dabei die Messanordnung bei Ihrer Auswertung. Des weiteren notieren Sie sich das Teilerverhältnis des Differenzverstärkers von U_{a} : U_{e} !

5. Versuchsdurchführung

Während des gesamten Versuchs ist der *Prüfling in <u>Dreieckschaltung</u>* verschaltet, beachten Sie dies bei Ihrer <u>Auswertung</u>! Vor jeder Messung ist darauf zu achten, dass der Drehmomentregler auf der Fernbedienung auf <u>Null</u> (Anschlag links) eingestellt wird. Dies entspricht dem Leerlauf-Zustand. Ist der Regler nicht auf <u>Null</u> gestellt können unzulässige Belastungszustände mit zu hohen Ankerströmen auftreten!

5.1 Asynchronmaschine am Sinusnetz

5.1.1. Anlauf und Leerlauf der ASM am Sinusnetz

Oszilloskopieren Sie i_s bzw. u_s für den Leerlauf und den Anlauf der ASM

Schalten Sie die Sinus-Einspeisung ein (Schalter S1).

Umrichterfreigabe "gesperrt"!

Stellen Sie den Umschalter US1 auf Sinusbetrieb (Position 1),

<u>Achtung:</u> Die ASM läuft damit sofort an, <u>beobachten Sie den Anlaufstrom</u>! Notieren Sie sich den <u>Leerlaufstrom</u> I_0 und die dazugehörige <u>Ständerspannung</u> U_s der ASM.

5.1.2. Fourier-Analyse der Strom- und Spannungsverläufe bei Sinusbetrieb

Führen Sie mit dem Oszilloskop eine *Fourier*-Analyse der Maschinenspannung u_s durch. Dazu ist die ASM unbelastet zu betreiben. Welche Ergebnisse erwarten Sie?

Schalten Sie die Sinuseinspeisung ab (Schalter S1), ebenso den Umschalter US1 (Position 0).

5.1.3. Belastungskennlinie bei Sinusspeisung

Es ist folgende Belastungskennlinie für Motorbetrieb aufzunehmen: n(M)

Aufzunehmende Größen sind: I_{s} , U_{a} , I_{a} , n

Schalten Sie die Erregung der GM (Schalter S3) ein.

Stellen sie zunächst den Drehmomentregler auf der Fernbedienung auf Null (Anschlag links). Der Ankerstrom I_a der Gleichstrommaschine ist in 1 A-Schritten bis zu einem maximalen Strom der ASM $I_s = 3,5A$ zu verstellen.

Die Belastung kann über den Umschalter auf der Position 1 eingeschaltet werden.

Schalten Sie die Sinuseinspeisung (Schalter S1), den Umschalter US1 und die Erregung der GM ab.

<i>I</i> a / A	0	1	2	3	4	5	6
<i>U</i> _a / V							
<i>I</i> s / A							
n / \min^{-1}							

Tabelle 5: Messwerte Aufgabe 5.1.2 – Belastungskennlinie Sinusspeisung

5.2. Asynchronmaschine am Umrichter

5.2.1. Inbetriebnahme des Umrichters

Stellen Sie den Umschalter US1 auf Umrichterbetrieb (Position 2).

Starten Sie den Drive-Manager. Es erscheint Abbildung 23.

Abbildung 23

Quittieren Sie mit OK. Der angeschlossene Umrichter wird somit identifiziert.

I. Wenn der Umrichter erfolgreich identifiziert wurde, erscheint folgendes Fenster (Abbildung 24). Es wird im Weiteren nicht gebraucht, schließen Sie es. Falls Abbildung 24 nicht erscheint, überprüfen Sie die Anschlüsse und starten Sie manuell eine neue Identifikation. Klicken Sie dazu im Menüpunkt <u>Kommunikation</u>→ <u>Verbindungsaufbau</u> → <u>Einzelnes Gerät</u> an

ፓ

oder drücken Sie den folgenden Button in der Menüleiste:

-Aktives Gerät		Typ: CDA32.004 Adresse: 1 Symbolischer Name:	Busstatus Aktives Bussystem: LUSTBUS Übertragungsrate: 57600 Teilnehmerzahl: 1	bit/s
Adresse 1	Gerät CDA32.004	Name	Zustand Einschaltsperre	
<		111		>

Abbildung 24

II. Das Hauptfenster (Abbildung 25) wird nach dem Verbindungsaufbau automatisch geöffnet

und erlaubt Ihnen, den Umrichter zu konfigurieren (falls nicht, öffnen Sie es mit:

C 1-CDA32.004 einstellen		\mathbf{X}					
	Voreingestellte Lösung: Analogsollwert & Korrektur, Drehgeber						
Erstinbetriebnahme	Grundeinstellungen	Erweitert >>					
Istwerte							
<u>E</u> instellung im Gerät spe	ichern <u>A</u> bbreche	n <u>H</u> ilfe					
Abbildung 25							

M8: Frequenzgesteuerte Asynchronmaschine (v1.8)

)

Führen Sie nun eine Erstinbetriebnahme gemäß Abbildung 26 durch. Zunächst stellen Sie im Menüpunkt <u>Erstinbetriebnahme</u> \rightarrow <u>Regelungsverfahren</u> die Option "<u>U/f-Kennlinien -steuerung</u>" ein. Danach gehen Sie in das Menü der <u>Erstinbetriebnahme</u> \rightarrow <u>Motordaten</u> \rightarrow <u>Typenschild</u> und geben die Daten des verwendeten Asynchronmotors an. Weiterhin aktivieren Sie die Auswertung des PTC-Widerstands durch Weiterblättern im Motordatenmenü: <u>Erstinbetriebnahme</u> \rightarrow <u>Motordaten</u> \rightarrow <u>Motorschutz</u>.

Abbildung 26

Starten Sie die Selbstidentifikation. Der Umrichter misst die wichtigsten Ersatzschaltbildparameter des Motors selbständig (Abbildung 27). Die "Freigabe" (Kippschalter am Umrichter) muss dazu erteilt sein. Die Identifikation dauert ca. 3 Minuten, es werden alle für die Regelung benötigten Parameter des Motors ermittelt, wie z.B. der Statorwiderstand und die Induktivitäten. Anschließend speichern Sie die Einstellungen im Gerät.

Abbildung 27

Schalten Sie die <u>IxR-Lastregelung</u> (Abbildung 28) ein: <u>Hauptfenster</u> \rightarrow <u>Erweitert</u> \rightarrow <u>Regelung</u> \rightarrow <u>IxR-Lastregelung</u>

Abbildung 28

III. Es ist eine maximale Grundschwingungsfrequenz von $f_{s,1} = 100$ Hz einzustellen (Abbildung 29):

<u>*Hauptfenster*</u>→<u>*Erweitert*</u>→ <u>*Sollwert/Rampen*→ <u>*Frequenzbegrenzung*</u></u>

Nun sind alle Voreinstellungen getroffen. Der Antrieb ist bereit, um in Betrieb genommen zu werden. Dazu öffnen Sie das <u>Steuern</u>-Fenster (Abbildung 30) mit dem folgenden Button in der

Menüleiste:

•

Um den Antrieb steuern zu können, muss die Umrichterfreigabe (Kippschalter) erteilt sein. Folgende Funktionen stehen Ihnen zur Verfügung:

- Im Feld A können Sie den Sollwert für die Drehfeldfrequenz vorgeben.
- Mit dem Klicken auf den Button **B** können Sie den Antrieb hochfahren.
- Mit dem Button C kann der Antrieb gestoppt werden.
- Am Bargraph D kann der Betrag des Istwertes der Frequenz abgelesen werden.

Abbildung 30

5.2.2. Aufnahme der U/f-Kennlinie und des Leerlaufstroms im Umrichterbetrieb

Die Klemmenspannung $U_{s,1}$ und der Strom $I_{s,1}$ der ASM ist in Abhängigkeit von der Ständerfrequenz $f_{s,1}$ bei abgeschalteter Belastung (Leerlauf) aufzunehmen: $U_{s,1}(f_{s,1})$ bzw. $I_{s,1}=I_0(f_{s,1})$ im Bereich 10Hz $< f_N < 2f_N$.

Aufzunehmende Größen sind: $I_{s,1}$, $U_{s,1}$, $f_{s,1}$, n

$f_{\rm s}$ / Hz	10	20	30	40	50	60	70	80	90	100
$U_{\rm s}$ / V										
<i>I</i> _s / A										
n / \min^{-1}										

Tabelle 6: Messwerte Aufgabe 5.2.2 – U/f Kennlinie im Umrichterbetrieb

5.2.3. Oszilloskopieren von Umrichtereingangsstrom und -spannung

Oszilloskopieren Sie den Umrichtereingangsstrom i_{Netz} und die Umrichtereingangsspannung u_{Netz} für Leerlauf der Asynchronmaschine bei einer Frequenz von $f_{s,1} = 50$ Hz.

5.2.4. Messung der Schaltfrequenzen des Umrichters

Überlegen Sie sich, wie die Schaltfrequenzen f_{schalt} des Umrichters nachgewiesen werden können.

Dazu ist die ASM unbelastet bei einer Ständerfrequenz von $f_{s,1} = 50$ Hz zu betreiben. Beachten Sie die Geräuschentwicklung bei den verschiedenen Schaltfrequenzen!

Oszilloskopieren Sie das ausgewählte Signal in Abhängigkeit der Schaltfrequenzen:

 $f_{\text{schalt}} = 4 \text{ kHz}, 8 \text{kHz} \text{ und } 16 \text{kHz}$

Zum Einstellen der Schaltfrequenzen im Drive-Manager gehen Sie folgendermaßen vor (Abbildung 31):

I. Klicken Sie im **Hauptfenster** auf Erweitert→Regelung →Endstufe

🛃 1-CDA32.004 einstellen 🛛 🔀	🛃 Regelung U/f-Kenn	linie	\mathbf{X}
Voreingestellte Lösung: Analogooliweit & Korrektur, Drehgeber	CDS1 🖸 CDS2 🔲	U/f-Kennlinie	CDS1 🖸 CDS2 📮 CDS1 📮 CDS2 📮
Erstinbetriebnahme Grundeinstellungen Erweitert >>	Stromgeführter Hochlauf	Voreinstellung CDS1 OFF (0) = Keine Voreinstellung	Stromeinprägung Aufmagnetisieren
	f	Voreinstellung CDS2 OFF (0) = Keine Voreinstellung	
Ausgänge Sollwett/Rampen Regelung Motor und Geber	Schlupfkompensation	Anpassen <u>Ü</u> bernehmen	
Bussysteme Datensätze KP200 Einstellen		·	CDS1 U CDS2 U
Istverte Fehler/Warrung	Aufsynchronisieren	Antipendelung Gleichstrombremsen	Gleichstromhalten
Einstellung im Gerät speichern Abbrechen Hile			<u>k</u> bbrechen
			ł
		⁷ Endstufe	
		••••	
		Schaltfrequenz 8KH	Z (1)
		· • • • ,	· · · · · · · · · · · · · · · · · · ·
		<u>O</u> k <u>A</u> bbreck	hen <u>Ü</u> bernehmen

Abbildung 31

II. Stellen Sie gewünschte Taktfrequenz ein bestätigen Sie mit OK und öffnen Sie

das <u>Steuern</u>-Fenster (

5.2.5. Fourier-Analyse der Strom- und Spannungsverläufe bei Umrichterbetrieb

Führen Sie eine *Fourier*-Analyse zur Erfassung der Oberschwingungen für die verschiedenen Schaltfrequenzen am Oszilloskop durch. Welches Signal benötigen Sie dazu?

Dazu ist die ASM unbelastet bei einer Ständerfrequenz von $f_{s,1} = 50$ Hz zu betreiben.

Hinweis: Gehen Sie vor wie, in Aufgabenpunkt 5.2.4 beschrieben.

5.2.6. Belastungskennlinien bei Umrichterbetrieb mit U/f-Kennliniensteuerung

Es sind folgende Belastungskennlinien für Motorbetrieb im Rechtslauf aufzunehmen:

n(M) für folgende Ständerfrequenzen $f_{\rm s,1}$: 20Hz, 30Hz, 50Hz, 70Hz, 90Hz.

Der Ankerstrom I_a der Gleichstrommaschine ist in 1A-Schritten bis zu einem maximalen Strom der ASM $I_{s,1} = 3,5$ A zu verstellen.

Aufzunehmende Größen sind: $I_{s,1}$, U_{a} , I_{a} , n

Für die Lastmessungen ist die GM wie in 5.1.3 beschrieben wieder zuzuschalten! Stellen sie zunächst den Drehmomentregler auf der Fernbedienung auf Null (Anschlag links).

<u>Hinweis</u>: Vor der Verstellung der Ständerfrequenzen ist stets der Drehmomentregler auf der Fernbedienung auf Null (Anschlag links) einzustellen!

<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									20
n / \min^{-1}									
<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									30
n / \min^{-1}									
<i>I</i> _a / A	0	1	2	3	4	4,5	5	5,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									50
n / \min^{-1}									
<i>I</i> _a / A	0	1	2	2,5	3	3,5	4	4,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									70
n / \min^{-1}									
I _a / A	0	0,5	1	1,5	2	2,5	3		
<i>U</i> _a / V									Hz
<i>I</i> _s / A									06
n / \min^{-1}									

Tabelle 7: Messwerte Aufgabe 5.2.6 – Belastungskennlinien Umrichterspeisung

5.2.7. Belastungskennlinien bei Umrichterbetrieb mit Schlupf-Kompensation

Nehmen Sie folgende Belastungskennlinien für Motorbetrieb im Rechtslauf auf:

n(M) für folgende Ständerfrequenzen $f_{s,1}$: 30Hz, 50Hz, 70Hz.

Der Ankerstrom I_a der Gleichstrommaschine ist in 1A-Schritten bis zu einem maximalen Strom der ASM $I_{s,1} = 3,5$ A zu verstellen. Aufzunehmende Größen sind: $I_{s,1}$, U_a , I_a , n

Abhängig von der Belastung kann der Umrichter die Grundschwingungsfrequenz $f_{s,1}$ leicht erhöhen, um den Schlupf s zu kompensieren.

Stellen Sie im Drive-Manager die Schlupf-Kompensation ein (Abbildung 32) und überprüfen Sie den Korrekturfaktor der Kompensation, der den Nennschlupf s_N der Maschine darstellt. Wie groß sollte dieser sein?

Abbildung 32

<u>Hinweis</u>: Vor der Verstellung der Ständerfrequenzen ist stets der Drehmomentregler auf der Fernbedienung auf Null (Anschlag links) einzustellen!

<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									30
n / \min^{-1}									
<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									50 Hz
<i>I</i> _s / A									
n / \min^{-1}									
I _a / A	0	1	2	3	4	4,5			
<i>U</i> _a / V									Hz
<i>I</i> _s / A									701
n / \min^{-1}									

Tabelle 8: Messwerte Aufgabe 5.2.7 – Belastungskennlinien Umrichterspeisung mit Schlupfkompensation

5.2.8. Belastungskennlinien bei Umrichterbetrieb mit feldorientierter Regelung

Es soll die Belastungskennlinie mit feldorientierter Regelung für folgende Frequenzen aufgenommen werden:

n(M) für $f_{s,1}$: 20Hz, 30Hz

Der Ankerstrom I_a der Gleichstrommaschine ist in 1A-Schritten bis zu einem maximalen Strom der ASM $I_{s,1} = 3,5A$ zu verstellen. Aufzunehmende Größen sind: $I_{s,1,}$, U_a , I_a , n

Im Gegensatz zu den bis jetzt gesteuerten Verfahren soll die ASM nun geregelt betrieben werden. Dazu ist die feldorientierte Regelung einzuschalten und die *U/f*-Kennliniensteuerung auszuschalten (Abbildung 33). Dazu stellen Sie in der <u>Erstinbetriebnahme</u> \rightarrow <u>Voreingestellte</u> Lösung \rightarrow <u>Rot_2</u> ein:

Abbildung 33

Beachten Sie, dass im <u>Steuern</u>-Fenster die Regelungsart <u>feldorientierte Drehzahlregelung</u> eingestellt werden muss (Abbildung 34):

ntrieb	Regelungsar	* • • • • • •	••••
Starten (Endstufe freigeben)	Feldorientierte	Drehzahlreg	elung 🗖
Stoppen (Endstufe sperren)	Sollweit	•••••	••••
<u>R</u> eversieren	0	H	Ηz
<u>H</u> alten (mit Drehzahl O)			
Eehler rücksetzen	-50	, 0	50
Betrag des Istwertes		Be	enden
			chidon .

Abbildung 34

<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									20
n / \min^{-1}									
<i>I</i> _a / A	0	1	2	3	4	5	6	6,5	
<i>U</i> _a / V									Hz
<i>I</i> _s / A									30
n / \min^{-1}									

5.2.9. Lastsprünge mit feldorientierter Regelung

Es sollen folgende Größen im Drive-Manager während des Zuschaltvorgangs oszilloskopiert werden: i_q , i_d , n, M

Fahren Sie die ASM mit einer Sollfrequenzvorgabe von $f_{s,1} = 50$ Hz hoch und stellen sie einen Ankerstrom der Gleichstrommaschine von $I_a = 3$ A ein. Schalten sie die Freigabe auf der Fernbedienung ein und beobachten sie die Drehzahl der Maschine.

- Speichern Sie die Diagramme zur späteren Auswertung als *.dat-Files ab.
- Öffnen Sie die Scope-Funktion mit folgendem Button

in der Menüleiste:

 In der Kartei <u>Kanal</u> (Abbildung 35) stellen Sie die zu oszilloskopierenden Größen ein und bestätigen Sie den Aufnahmewunsch mit dem "Häkchen". Danach stellen Sie in der Kartei <u>Zeit</u> eine Aufnahmedauer von etwa 4 Sekunden ein. Klicken Sie auf den Button <u>Aufnahme</u> <u>Starten</u>. Jetzt können Sie die Aufnahme zu einem beliebigen Zeitpunkt starten, in dem Sie auf <u>Manuell Triggern</u> drücken. Schalten Sie unmittelbar nach dem Triggern die Belastung zu.

C Digital Scope				
Kanal J Triang J Taik J Conduction Minang J		🗹 Digital Scope Aufnahmegröße wählen		×
		Aufnahmengröße ∇	Einheit	^
V 0 Strom gråchte	-,	Sollstrom in Phase U	A	
	<u>^</u>	Sollstrom in Phase V	A	8
• 📭 1 Sollstrom q-Achse • • • • • 0	A	Sollstrom in Phase W	A	
2 Effektivuvert des Scheinstrome		Solistrom q-Achse	A	8
	Α	Soliwert aer Regelung	HZ Un	8
3 Effektivwert des Wirkstroms 0	A	Spannungsänderung durch IvB	V V	
,,		Strangstrom in Phase U	Å	8
		Strangstrom in Phase V	Ä	8
Aufnahme starten <u>B</u> eenden	<u>H</u> ilfe	Strangstrom in Phase W	Α	8
		Strom d-Achse	A	
		Strom g-Achse	A	8
C Digital Scope		Wirkstrom nach Filter für Aufsunchronisieren	Min-1	
		Wirkstrom nach Filter für IxB	Â	_
Kanal Trigger Zeit Sonderfunktionen		Wirkstrom nach Filter für Schlupfkompensation	Ä	=
		Zustand der Selbsteinstellung		
Vorgabewert ist		Zwischenkreisspannung	V	~
Aufnahmefenster (Dauer)			>	-
· · · · · · · · · · · · · · · · · · ·				
C Zeit pro Abtastwert (Basis)0.2496 ms				
		Status		
Aufnahme starten Beenden	Hilfe	Warte auf Triggerereignis		
	<u></u>	0%		
* * * * * * * * *				
		Manuell Triggern Abbrechen		
Abbildung 25				

Abbildung 35

6. Versuchsausarbeitung

6.1. Asynchronmaschine am Sinusnetz

6.1.1. Anlauf und Leerlauf der ASM am Sinusnetz

Typischerweise gilt bei ASM $I_0 = 0,3...0,8I_N$. Berechnen Sie das Verhältnis von Leerlaufstrom zu Nennstrom der ASM und versuchen Sie zu erklären, wieso dieses Verhältnis bei dieser Maschine so groß ist!

6.1.2. Fourier-Analyse der Strom- und Spannungsverläufe bei Sinusbetrieb

Welche Ordnungszahlen der Harmonischen treten in der Ständerspannung der ASM auf?

6.1.3. Belastungskennlinie bei Sinusspeisung

Berechnen Sie das Drehmoment M(n) und geben Sie alle Zwischenlösungen an (siehe Hinweis)!

Zeichnen Sie die unter diesen Aufgabenpunkten ermittelten Kennlinien M(n) in ein Diagramm!

6.2. Asynchronmaschine am Umrichter

6.2.1. Aufnahme der U/f-Kennlinie und des Leerlaufstroms im Umrichterbetrieb

Zeichnen Sie die U/f-Kennlinie und die I_0/f -Kennlinie in ein Diagramm und erklären Sie, wie die Verläufe zustande kommen!

6.2.2. Oszilloskopieren von Umrichtereingangsstrom und -spannung

Durch welche leistungselektronische Schaltung kommen die oszillographierten Kurvenverläufe von Eingangsstrom und Eingangsspannung am Umrichter zustande?

6.2.3. Messung der Schaltfrequenzen des Umrichters

Wie kommt es dazu, dass die Frequenz der gepulsten, verketteten Ständerspannung der Maschine (Pulsfrequenz, siehe Abbildung 17) die der doppelten Schaltfrequenz ist?

Hinweis: Überlegen Sie sich dazu, wie dieses Signal generiert wird.

6.2.4. Fourier-Analyse der Strom- und Spannungsverläufe bei Umrichterbetrieb

Welcher Zusammenhang besteht zwischen den Frequenzen der Oberschwingungen und der Grundschwingung? Wie kommen die Amplituden zustande?

6.2.5. Belastungskennlinien bei Umrichterbetrieb mit U/f-Kennliniensteuerung

Berechnen Sie das Drehmoment M(n) und geben Sie alle Zwischenlösungen an (siehe Hinweis)!

Zeichnen Sie die unter diesen Aufgabenpunkten ermittelten Kennlinien M(n) in ein Diagramm!

6.2.6. Belastungskennlinien bei Umrichterbetrieb mit Schlupf-Kompensation

Berechnen Sie das Drehmoment M(n) und geben Sie alle Zwischenlösungen an (siehe Hinweis)!

Zeichnen Sie die unter diesen Aufgabenpunkten ermittelten Kennlinien M(n) in ein Diagramm!

6.2.7. Belastungskennlinien bei Umrichterbetrieb mit feldorientierter Regelung

Berechnen Sie das Drehmoment M(n) und geben Sie alle Zwischenlösungen an (siehe Hinweis)!

Zeichnen Sie die unter diesen Aufgabenpunkten ermittelten Kennlinien M(n) in ein Diagramm!

Wie kann es sein, dass bei der feldorientierten Regelung (FOR) die Maschine mit Synchrondrehzahl ein Drehmoment entwickelt? Sollte dies nicht null sein?

6.2.8. Lastsprünge mit feldorientierter Regelung

Die Werte von i_q , i_d , n, M stehen als Text-Datei zur Verfügung. Zeichnen Sie deren zeitlichen Verläufe (z.B. EXCEL). Diskutieren Sie die Ergebnisse. Wieso bleibt der d-Strom beim Drehmomentsprung konstant?

6.3. Vergleich der Asynchronmaschine am Sinusnetz mit der Asynchronmaschine am Umrichter

Wieso ist im Leerlauf der Maschine das Moment nicht null?

Wie kommt der Unterschied zwischen Umrichterbetrieb bei $f_{s,1} = 50$ Hz und Sinusbetrieb zustande?

Hinweis: Beachten Sie die Spannungen!

Vergleichen Sie die einzelnen ermittelten Belastungskennlinien aus 6.1.3, 6.2.5, 6.2.6 und 6.2.7 miteinander!

Hilfe: Berechnungsbeispiel für das Drehmoment

• Bei einer Drehzahl von $n = 1152 \frac{1}{\min}$ wird eine Ankerspannung $U_a = 77V$ und ein

Ankerstrom $I_a = 3A$ gemessen

• Daher ist die nutzbare elektrische Leistung $P_{\rm e} = U_{\rm a} \cdot I_{\rm a} = 231 \text{W}$

- Die Stromwärmeverluste sind: $P_{Cu,a} = R_{(A+W),warm} \cdot I_a^2 = 2,055 \cdot (3A)^2 = 18,49W$ wobei $R_{(A+W),warm} = R_{(A+W),kalt} \frac{235^\circ C + 75^\circ C}{235^\circ C + 20^\circ C} = 1,69\Omega \cdot 1,22 = 2,055\Omega$
- Die Bürstenverluste sind $P_b = 2 \cdot U_b \cdot I_a = 2 \cdot 1 \vee 3A = 6 \vee$
- Die Ummagnetisierungs- und Reibungsverluste sind laut Gleichung 4.6: $P_{\text{Fe+R}} = n^2 \cdot 9 \cdot 10^{-6} + n \cdot 0,02 = 1152^2 \cdot 9 \cdot 10^{-6} + 1152 \cdot 0,02 = 34,98W$
- Das heißt die mechanisch zugeführte Leistung ist:

$$P_{\rm m} = U_{\rm a} \cdot I_{\rm a} + R_{\rm a} \cdot I_{\rm a}^2 + P_{\rm Fe+R} + P_{\rm b} = 231W + 18,49W + 6W + 34,98W = 290,47W$$

 \circ $\;$ Und somit das Drehmoment:

$$M_{\rm e} = \frac{P_{\rm m}}{\Omega_{\rm m}} = \frac{290,47W}{2\pi \frac{1152 \text{min}^{-1}}{60 \text{ s/min}}} = 2,41 \text{Nm}$$

7. Schaltplan des Versuchsstandes

8. Literaturverzeichnis

- [1] Fachkunde Elektrotechnik; 23. Auflage, Verlag Europa Lehrmittel Haan-Gruiten 2002
- [2] A. Binder (Institut für elektrische Energiewandlung, Technische Universität Darmstadt): *Vorlesungsskript Elektrische Maschinen und Antriebe 1;* Wintersemester 1999/2000
- [3] A. Binder (Institut für elektrische Energiewandlung, Technische Universität Darmstadt): *Vorlesungsskript Elektrische Maschinen und Antriebe 2*, Sommersemester 2000
- [4] T. Weiland (Fachgebiet Theorie elektromagnetischer Felder, Technische Universität Darmstadt): *Vorlesungsskript Feldtheorie I*, Wintersemester 2000/2001
- [5] K. Vogt: *Elektrische Maschinen, Berechnung rotierender elektrischer Maschinen,* 2., durchgesehene Auflage, VEB Verlag Technik Berlin 1974
- [6] K. Falk: *Der Drehstrommotor*, Ein Lexikon für die Praxis, VDE-Verlag GmbH Berlin Offenbach 1997
- [7] H. Merz: *Elektrische Maschinen und Antriebe*, VDE Verlag Berlin Offenbach 2001
- [8] E. Spring: Elektrische Maschinen, Eine Einführung, Springer- Verlag Berlin Heidelberg 1998
- [9] R. Fischer: *Elektrische Maschinen*, 8., überarbeitete und erweiterte Auflage, Carl Hanser Verlag München Wien 1992
- [10] K. Hasse (Institut für Stromrichtertechnik und Antriebsregelung, Technische Universität Darmstadt): *Vorlesungsskript Regelung in der Antriebstechnik*, Sommersemester 1998
- [11] Mohan/Undeland/Robbins, John Wiley & Sons: *Power Electronics Converters, Applications and Design*, Inc. (New York, Chichester, Brisbane, Toronto, Singapore) Second Edition 1995
- [12] P. Mutschler (Institut für Stromrichtertechnik und Antriebsregelung, Technische Universität Darmstadt): Vorlesungsskript Leistungselektronik 1, Wintersemester 1998/99
- [13] H. Spät: *Elektrische Maschinen und Stromrichter*, Grundlagen und Einführung/ Karlsruhe Braun 1984
- [14] Heidenhain Drehgeber Katalog, Ausgabe Oktober 2002
- [15] Moeller- Werr: *Leitfaden der Elektrotechnik Gleichstrommaschinen*, Band II Teil 1, Achte Auflage, B.G. Teubner Verlagsgesellschaft Stuttgart 1959
- [16] AEG Handbücher: *Gleichstrommaschinen*, Band 2, Zweite Auflage, Allgemeine Elektricitäts-Gesellschaft Berlin 1964

9. Anhang: Prinzip der feldorientierten Regelung bei ASM

Das stationäre Ersatzschaltbild (ESB) der Asynchronmaschine (Vorlesung EMA, Kap. 5, gültig für $U_{\rm s} = konst, f_{\rm s} = konst, n = konst$) zeigt, dass der Statorstrom $I_{\rm s} = I_{\rm m} - I_{\rm r}'$ in den Magnetisierungsstrom $I_{\rm m}$ und den (auf die Statorseite umgerechneten) Rotorstrom $I'_{\rm r}$ zerlegt werden kann. Bei einer Drehzahlregelung muss n verändert werden können. Das erfolgt über Änderung der Statorfrequenz *f*_s und, damit der Statorfluss konstant bleibt, über die Statorspannung $U_{\rm s} \sim f_{\rm s}$. Dann ändern sich beim Regelvorgang gleichzeitig $\underline{I}_{\rm m}$ und $\underline{I}'_{\rm r}$. Da $L_{\rm h}$ viel größer als $L'_{\rm r,\sigma}$ ist, ändert sich bei einer $I_{\rm m}$ -Änderung die wesentlich größere magnetische Energie $W_{\rm m,m} = \frac{3}{2}L_{\rm m}I_{\rm m}^2$, bei I'_r -Änderung die deutlich kleinere magnetische Energie $W_{m,r} = \frac{3}{2}L'_{r,\sigma}(I'_r)^2$. Folglich dauert eine I_m -Änderung deutlich länger als eine I'_r-Änderung (ca. 20-30-fach) Bei der feldorientierten Regelung sind dem Regelsystem neben U_s und f_s die ESB-Parameter z. B. aus einer Messung bekannt, ebenso die Drehzahl n und damit der Schlupf s. Dann kann rechnerisch der gemessene Strom I_s in I_m und \underline{I}'_r zerlegt werden. Die Spannung $\underline{U}_s = \underline{U}_{s1} + \underline{U}_{s2}$ wird rechnerisch so in zwei Komponenten $\underline{U}_{s1}, \underline{U}_{s2}$ zerlegt, dass bei Änderung von \underline{U}_{s2} nur \underline{I}'_r , nicht aber \underline{I}_m geändert wird. Diese Zerlegung heißt "Feldorientierung", da Im das Hauptfeld erregt (Prinzip von F. Blaschke und K. Hasse, Deutschland, 1969). Das Drehmoment $M_{\rm e}$ wird z. B. aus dem Hauptfluss $\Phi_{\rm h}$ und dem Rotorstrom $I_{\rm r}'$ gemäß der LORENTZ-Kraftregel ($M_e \sim F_e \sim B_h \cdot I'_r \sim \Phi_h \cdot I'_r$) gebildet. Beim Regelvorgang bleibt nun $\Phi_h \sim I_m$ konstant, nur I'_r (und damit I_s) ändert sich. So kann mit einer raschen I'_r -Stromänderung rasch das Drehmoment M_e für den Regelvorgang geändert werden, um über $J \cdot 2\pi \frac{dn}{dt} = M_e - M_s$ die Drehzahl *n* zu ändern, z. B. *n* einem neuen Sollwert n_{soll} anzugleichen. Beim Betrieb mit $f_s > f_N$, wo $U_{\rm s} = U_{\rm s,max}$ den Maximalwert erreicht hat, wird der Hauptfluss $\Phi_{\rm h} \sim 1/f_{\rm s}$ geschwächt, um auch bei hohen Drehzahlen $n > n_N$ fahren zu können. Diese Hauptflussverringerung erfolgt bei f_s -Steigung wegen $W_{m,m} > W_{m,r}$ langsam. Regelvorgänge bei dann konstantem feldgeschwächten Betrieb werden wieder über die feldorientierte Regelung schnell über die I'r-Änderung durchgeführt.

10. Verständnisfragen

- 1) Zeichnen Sie den Vier-Quadranten Betrieb eines drehzahlveränderlichen Antriebs!
- 2) Zeichnen Sie das Drehmoment *M* einer ASM in Abhängigkeit vom Schlupf *s* bzw. von der Drehzahl *n*!
- 3) Bewerten Sie die Schleifringläufer-ASM, die polumschaltbare ASM und die Käfigläufer-ASM bei konstanter Frequenz *f* sowie die Käfigläufer-ASM bei variabler Frequenz *f* hinsichtlich Grenzleistung, Höchstdrehzahl, Bremsung, Drehzahleinstellung, Dynamik, Anlaufmoment, Gewicht/Bauvolumen, Trägheitsmoment, Störanfälligkeit Wartungsbedarf, Wirkungsgrad von Maschine und Stromversorgung sowie Anschaffungskosten für Maschine und Stromversorgung! Skala: +++ sehr günstig; --- sehr ungünstig !
- 4) Geben Sie allgemein die Formel für den Schlupf *s*, das Spannungsübersetzungsverhältnis \ddot{u}_U und das Stromübersetzungsverhältnis \ddot{u}_I der ASM an. Spezialisieren die Übersetzungsverhältnisse für die Käfigläufer-ASM!
- 5) Zeichnen Sie das Ersatzschaltbild der ASM und geben Sie die bekannten Gleichungen der Maschenumläufe an!
- 6) Welchen Einfluss besitzt die Stromverdrängung auf das Anlaufmoment und das Kippmoment? Berechnen Sie die Eindringtiefe für Kupfer bei f = 50 Hz!
- 7) Nennen Sie die fünf Steuerverfahren für die Verstellung der Drehzahl! Skizzieren Sie jeweilige Veränderung der Momentenkennlinie! Geben Sie außerdem die zugehörige Läuferart und die Eigenschaften an!
- 8) Geben Sie den Kippschlupf der ASM an und zeichnen Sie den Momentverlauf für verschiedene Läuferwiderstände! Welchen Einfluss haben die Läuferwiderstände auf den Betrag des Kippmoments? Bei welcher Läuferart können die Läuferwiderstände beeinflusst werden?
- 9) Wie unterscheidet sich die Momentenkennlinie bei frequenzproportionaler Spannungsänderung für Statorstrangwiderstand $R_s = 0$ und für $R_s \neq 0$ (Skizze)? Welchen Einfluss besitzt der Statorstrangwiderstand auf die *U*/*f*-Kennlinie für konstante Flüsse?
- 10) Zeichnen Sie die M(n)-Kennlinien im Konstantleistunsgbetrieb und im Konstantmomentbetrieb!
- 11) Geben Sie die Kurzschlusszeitkonstante T_1 und die Hauptfeldzeitkonstante T_2 der ASM an und vergleichen Sie beide! Welcher Stromanteil ist drehmomentbildend und welcher Stromanteil ist flussbildend?
- 12) Zeichnen Sie einen Querschnitt durch die Maschinenebene mit sinusförmig verteiltem *B*-Feld im Luftspalt und geben Sie die Orientierung des zugehörigen Flussraumzeigers $\underline{\Psi}$ an. Mit welcher Geschwindigkeit dreht sich der Flussraumzeiger $\underline{\Psi}$ bezüglich des Stators? Wie lässt sich der durch die drei Stranggrößen entstandene Flussraumzeiger $\underline{\Psi}$ durch ein orthogonales Koordinatensystem darstellen?
- 13) Geben Sie die *Clarke*-Transformation als Formel und graphisch am Beispiel des Flussraumzeigers $\underline{\Psi}$ an! Mit welcher Transformation wird der durch die drei Stranggrößen entstandene Flussraumzeiger $\underline{\Psi}$ in einem mitrotierenden Koordinatensystem ausgedrückt und zeichnen Sie diese Transformation ebenfalls graphisch am Beispiel des Flussraumzeigers $\underline{\Psi}$!
- 14) Zeichnen Sie das Blockschaltbild zur feldorientierten Regelung!
- 15) Wie ändern sich bei einem Lastsprung die folgenden Größen: Motordrehmoment M_e , *d*-Strom I_d , *q*-Strom I_q und Drehzahl *n*?

- 16) Beschreiben Sie den Aufbau des Frequenzumrichters!
- 17) Erläutern Sie die synchrone und die asynchrone Taktung? Wie werden diese Verfahren genannt? Überlegen Sie sich, wie die Schaltfrequenzen f_{schalt} des Umrichters nachgewiesen werden können!
- 18) Was beschreibt der Modulationsgrad m_a ? Welche Steuerbereiche gibt es beim 3-phasigen Wechselrichter auf!
- 19) Skizzieren Sie den Verlauf der Spannungen beim Unterschwingungsverfahren mit $m_f = 3$ (Dreifachtaktung) und $m_a = 0,7!$
- 20) Erläutern Sie das Funktionsprinzip des Drehgebers!