Inhalt der Vorlesung

Numerische Simulation elektrothermischer Prozesse

- 1. Einführung / Übersicht über Verfahren / Simulation zur Wirtschaftlichkeitsanalyse
- 2. Grundlagen der Wärmelehre, Simulation von Temperaturfeldern
- 3. Energieeffizienz / Konduktive Erwärmung (Praxis und Simulation)
- 4. Maxwell-Gleichungen / Leistungsumsetzung / Wirkungsgrad
- 5. Induktionserwärmung 1: Umrichter, Schmelzöfen, Schmieden Umrichter, ITO, IRO, Skull, Volumenleistungsdichte, Zonensteuerung
- 6. Induktionserwärmung 2: Querfeld, Härten, Schweißen
- 7. Induktionserwärmung 3: Simulation (Praxis und Übung)
- 8. Indirekte Erwärmung / Hybrid-Verfahren
- 9. Dielektrische Erwärmung (Praxis und Simulation)
- 10. Organisatorisches, Übungen, Fragen & Antworten

Quelle: SMS Elotherm

- Anwendungen der induktiven Erwärmung Überblick
- Vorteile einer Schwingkreislast
- Schwingkreisumrichter

Induktive Erwärmung: Leistungs- und Frequenzspektrum

Quelle: SMS Elotherm

Vorteile einer Schwingkreislast

$$\omega_0 = \frac{1}{\sqrt{L \cdot C}}$$

$$d = \frac{R}{2L \cdot \omega_0}$$

$$\omega_e = \omega_0 \cdot \sqrt{1 - d^2}$$

- Wenn der Schwingkreis von einer Wechselstromquelle gespeist wird, deren Frequenz der Resonanzfrequenz des Schwingkreises gleicht, wird der Induktorblindstrom vollständig vom Kondensatorstrom kompensiert.
- In diesem Fall muss die Stromquelle nur die im Werkstück verbrauchte Energie nachliefern. Sie wird nicht mit Blindleistung belastet.

Quelle: SMS Elotherm

Schwingkreisumrichter

- Parallelschwingkreisumrichter
- Serienschwingkreisumrichter
- Umrichter mit L-LC-Lastschaltung
- Leistungshalbleiter für Schwingkreisumrichter

Quelle: SMS Elotherm

Leistungshalbleiter für Schwingkreisumrichter

- Thyristor
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor Field Effect Transistor

Quelle: SMS Elotherm

Leistungshalbleiter für die Schwingkreisumrichter

- IGBT :
 - Abschaltbar
 - Frequenzbereich >= 200kHz
 - IGBT im Entwicklungsfokus
 - Langfristige Lieferbarkeit gesichert

- Frequenzthyristor :
 - Nicht abschaltbar
 - Frequenzbereich <= 10kHz</p>
 - Frequenzthyristoren werden nicht mehr weiter entwickelt
 - Mittelfristig Lieferprobleme zu erwarten

Quelle: SMS Elotherm

Parallelschwingkreisumrichter: Prinzipschaltbild

Quelle: SMS Elotherm

Parallelschwingkreisumrichter: Funktionsprinzip

Quelle: SMS Elotherm

Parallelschwingkreisumrichter: Eigenschaften

- + Geeignet für alle Anwendungen der induktiven Erwärmung
 - + Einsetzbar in sehr großem Frequenzbereich
- + Guter Wirkungsgrad
 - Reduktion der Schaltverluste durch optimierte Kommutierung und "weiches"
 Schalten der Transistoren ("Soft Switching")
- + In der Regel kein Ausgangstransformator erforderlich
 - Direkter Anschluss der Schwingkreislast an den Wechselrichterausgang möglich
- Leistungssteuerung über den Gleichrichter
- Verschlechterung des Leistungsfaktors bei kleinen Ausgangsspannungen

Quelle: SMS Elotherm

Parallelschwingkreisumrichter:

IGBT - Technologie, 3600kW, 1000V, 2kHz

Quelle: SMS Elotherm

Parallelschwingkreisumrichter:

MOSFET - Technologie, 800kW, 450V, 400kHz

Quelle: SMS Elotherm

Serienschwingkreisumrichter: Prinzipschaltbild

Quelle: SMS Elotherm

Serienschwingkreisumrichter: Funktionsprinzip

Quelle: SMS Elotherm

Serienschwingkreisumrichter: Eigenschaften

- + Geeignet für alle Anwendungen der induktiven Erwärmung
- + Einsetzbar in sehr großem Frequenzbereich
- + Guter Wirkungsgrad
 - Reduktion der Schaltverluste durch lastgeführten Wechselrichter und "weiches" Schalten der Transistoren ("Soft Switching")
- + Leistungssteuerung über den Wechselrichter möglich
- + Ungesteuerter Gleichrichter
- + Guter netzseitiger Leistungsfaktor in allen Betriebszuständen
- Ein Transformator ist für die Anpassung der Lastimpedanz an die Ausgangsimpedanz des Wechselrichters meist unvermeidbar

Quelle: SMS Elotherm

Serienschwingkreisumrichter:

IGBT - Technologie, 2200kW, 800V, 150kHz

Schwingkreis-Umrichter

Glättungsdrossel:	klein	groß	Quelle: Verfahrensinformation
Glättungskondensator:	klein	/	Induktive Erwärmung,
Freilaufdioden:	erforderlich	/	RWE Energie

Reduzierung von Oberschwingungen - I

12-pulsiger Thyristorumrichter

- 1 Leistungsschalter
- 2 Stromrichter-Transformator
- 3 Gleichrichter
- 4 Gleichstrom-Zwischenkreis mit symmetrisch aufgeteilter Glättungsdrossel

- 5 Wechselrichter
- 6 Parallelkondensatorbatterie
- 7 Starteinrichtung
- 8 Induktionsspule

Reduzierung von Oberschwingungen - II

Oberschwingung	6-pulsig < 2 MW	12-pulsig 2 6 MW	24-pulsig > 6 MW
5.	18,6	1,8	1,8
7.	12,4	1,1	1,1
11.	6,4	5,6	0,6
13.	4,6	3,8	0,4
17.	2,2	0,2	0,2
19.	1,5	0,1	0,1
23.	0,6	0,7	0,7
25.	0,6	0,7	0,7

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter: Prinzipschaltbild

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter: Funktionsprinzip

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter: Eigenschaften

- + Die Frequenz kann während des Betriebs kontinuierlich verändert werden
- + Frequenz und Leistung sind über den Wechselrichter steuerbar
- + Ungesteuerter Gleichrichter
- Der Wechselrichter muss für den vollen Blindstrom des Induktors bemessen werden
- Schlechter Wirkungsgrad
- Hohe Kosten im Vergleich zu Schwingkreisumrichter gleicher Leistung

Induktives Schmelzen - Ofentypen

Induktions-Tiegelofen

Quelle: RWE-Information Prozesstechnik

- Überwiegend Schmelzaggregat
- Mittlerer Wirkungsgrad
- Frequenzen: 50 ... 1000 Hz

Induktions-Rinnenofen

- Überwiegend Warmhalteaggregat
- Hoher Wirkungsgrad
- Frequenzen: 50 Hz, 60 Hz

Zustellungen von Induktionstiegelöfen

Betone (Boden, Spulen-Druckringe)

- → druckfest
- → Temperaturwechselfest
- → elektrisch isolierend
- → Bindung bereits bei niedrigen Temperaturen erforderlich
- →geringer Wassergehalt

Verschleißfutter (Tiegel):

- → resistent gegen chemische Einflüsse
- → Temperaturfest, temperaturwechselfest
- →abriebfest (starke Schmelzenströmung)
- → gute thermische Isolation
- → geringe Neigung zur Rissbildung
- →Optimal:
 - hohe Festigkeit (Sinterung) an der Oberfläche,
 - geringe Festigkeit (Rieselfestigkeit)
 vor Spule, realisiert durch trocken
 gestampfte Tiegel
- → Kompromiss bezüglich thermischer Isolierung, elektromagnetischer Kopplung und Verschleißdicke

Zustellungen von Induktionsrinnenöfen

Kessel:

- →hohes thermisches Isolationsverhalten (Isolier-steine zum Stahlkessel hin)
- →hohe Temperaturfestigkeit zur Schmelze → Mehrschicht-Aufbau

Induktor:

- → sehr hohe Temperaturfestigkeit
- geringe Infiltrationsneigung (hohe Dichte)
- →hohe Temperaturwechselfestigkeit
- →gute Kühlung am Kühlmantel und Gehäuse, um Durchsinterung zu vermeiden

Ausführungsarten der Zustellungen

Induktionstiegelofen:

gestampfte Tiegel:

- Gusseisen: SiO₂

- Stahl: SiO₂/Al₂O₃

- Al: Al₂O₃

- Cu: Mullite (SiO₂+Al₂O₃)/Al₂O₃

- Betone: Low Cement

Fertigtiegel:

- Al_2O_3 , SiO_2

Induktionsrinnenofen:

Kessel:

 Gusseisen: MgO/Al₂O₃spinellbildend

- Cu: Al₂O₃

Induktor:

MgO/Al₂O₃-spinellbildend SiO₂ nicht geeignet wegen zu geringer Temperaturfestigkeit

Temperaturbeständigkeit: MgO > Al2O3 > SiO2 Kosten (€/t): MgO (6000) > Al2O3 (2500) > SiO2 (250)

Elektrotechnische Grundlagen in Induktionsschmelzöfen

Stromdichte in der Schmelze in A/m²:

 $\delta = \sqrt{\rho/(\pi \mu f)}$

 $S_x = S_0 \cdot e^{-x/\delta}$

Elektromagnetische Eindringtiefe in m:

 $P_i = \rho/\delta \cdot A \cdot H^2$

Leistungsumsetzung in der Schmelze in W:

Elektromagnetischer Druck auf die Schmelze:

 $p = 1/2 \cdot P_i / A \cdot \sqrt{\mu / (\pi \rho f)}$

Badüberhöhung in m:

 $h_{ii} = p/\gamma$

Abhängigkeit der Badüberhöhung von der Frequenz:

 $1/f^{0.5} = 1/\sqrt{f}$

Abhängigkeit der Strömung von der Frequenz:

 $1/f^{0,7}...1/f^{0,9}$

Scheinleistung in kVA:

 $S = U \cdot I$

Wirkleistung in kW:

 $P_W = U \cdot I \cdot \cos \varphi$

Blindleistung in kVA:

 $P_{B} = U \cdot I \cdot \sin \varphi$

Leistungsfaktor:

 $\cos \varphi$

Elektrischer Wirkungsgrad:

$$\eta_e = P_i / (P_i + P_v)$$

Induktives Schmelzen - Anwendung

Induktions-Tiegelofen mit Randabsaugung

Werkbild ABB

Schmelzen: Gusseisen, Stahl,
 Schwermetalle, Leichtmetalle

30 t-Induktions-Rinnenofen

Werkbild ABB

Schmelzen: Gusseisen, Aluminium,
 Kupfer und Kupfer-Legierungen

Schmelzanlage für Gusseisen

Mittelfrequenz-Induktions-Tiegelofen

- Fassungsvermögen:
 - je 6t
- Anschlussleistung:
 - je 3300 kW / 250 Hz

Quelle: ABB Industrietechnik AG, Dortmund

Vorteile des Mittelfrequenz-Hochleistungs-Schmelzens

GG: Grauguss

- kurze Schmelzzeiten
- hoher Durchsatz
- ogeringe Wärmeverluste
- hoher Prozesswirkungsgrad
- kurze Reaktionszeit zwischen Schmelze und Tiegelzustellung

<u>Beispiele</u> für erfolgreiches und betriebssicheres Schmelzen mit Hochleistungs-Mittelfrequenz-Tiegelöfen:

- Ofenleistung von 6000 kW bei 6 t GG und 250 Hz seit 1989
- Ofenleistung von 9300 kW bei 12 t GG und 220 Hz seit 1992
- Ofenleistung von 16000 kW bei 20 t GG und 220 Hz seit 1999

ITO – Größen, Schmelzgut, Frequenzen

	Schmelzgut	Größen in t	Leistung in MW	Frequenzen in Hz
NF-Öfen:	Gusseisen, Stahl	1,3 100	0,5 21	50 60
	Leichtmetalle	0,5 15	0,2 4	50 60
	Schwermetalle	1,5 40	0,5 7	50 60
MF-Öfen:	Gusseisen, Stahl	0,25 30	0,3 16	150 1000
	Leichtmetalle	0,1 8	0,2 4	90 1000
	Schwermetalle	0,3 70	0,3 16	65 1000

NF: Niederfrequenz, MF: Mittelfrequenz

Induktionsöfen

Wirkungsgrad, Energieverbrauch, Schmelzleistung

			i		
Kunde: Gießerei XY			Ofentyp: IT 7 (15 t)		
Einsatzmaterial: GG			Frequenz: 50 Hz		
Abgusstemperatur: 1500 °C			Sonstiges: Sumpfbetrieb 40 %		
1	Netzanschlussleistung	4500 k\	W	-Trafoverluste (1,5 %)	-70 kW
2	Kondensator-Eingangsleistung	4430 k\	W	-UR-/Kondverluste(1 %)	-40 kW
3	Kondensator-Ausgangsleistung	4390 k\	W	-Kabelverluste -Kabelanschlussverluste	-75 kW -5 kW
4	Spulenleistung	4310 k\	W	-Nennspulenverluste (19%)	-820 kW
5	Feldleistung	3490 k\	W	-Blechpaketverluste -Sekundärverluste (%) -Verluste beim Schmelzen (6 %)*)	-20 kW -10 kW -210 kW
6	Induzierte Leistung	3250 k\	W	-Wärmeverluste	-140 kW
7	Nutzleistung			*) Verluste: z.B. durch <u>Unterfüllung</u> des Ofens	
8	Erforderliche Schmelzenergie	385 kW	/h/t	Gewinne: z.B. durch kaltes Material unter Curietemperatur	
9 Gesamtwirkungsgrad (7/1)		0,691			
10	Spezifischer Energieverbrauch (8/9)	557 kW	/h/t		
11	Schmelzleistung (7/8)*0,85 keine Konstantleistung	6,9 t/h			

Induktionsöfen

Wirkungsgrad, Energieverbrauch, Schmelzleistung

Kunde: Gießerei XY			Ofentyp: IFM 7 (15 t)			
Einsatzmaterial: GG			Frequenz: 250 Hz			
Abgusstemperatur: 1500 °C		Sonstiges: Chargenbetrieb Konstantleistung				
1	Netzanschlussleistung	10000 kW		-Trafoverluste (1,5 %)	-150 kW	
2	Umrichter-Eingangsleistung	9850 kW		-UR_/Kondverluste (4 %)	-390 kW	
3	Umrichter-Ausgangsleistung	9460 kW		-Kabelverluste -Kabelanschlussverluste	-200 kW -10 kW	
4	Spulenleistung	9250 kW		-Nennspulenverluste (19 %)	-1760 kW	
5	Feldleistung	7490 kW		-Blechpaketverluste -Sekundärverluste (%) -Gewinne beim Schmelzen (5 %) *)	-60 kW -20 kW +370 kW	
6	Induzierte Leistung	7780 kW		-Wärmeverluste	-120 kW	
7	Nutzleistung	7660 kW	*) Verluste: z. B. durch Unterfüllung des Ofen		es Ofens	
8	Erforderliche Schmelzenergie	385 kWh/t 0,766		Gewinne: z. B. durch <u>kaltes Material</u> unter		
9	Gesamtwirkungsgrad (7/1)			Curietemperatur (Batch-Faktor)		
10	Spezifischer Energieverbrauch (8/9)	503 kWh/t				
11	Schmelzleistung (7/8)	19,9 t/h				

Badbewegung beim ITO

Quelle: RWE-Information Prozesstechnik

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Mittelfrequenz-Induktionstiegelofen:

- 12 t Gusseisen
- Leistung 9 MW
- Frequenz 230 Hz

Tiegeldurchmesser: 1,20 m

Tiegelhöhe: 1,30 m

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Velocity Vectors Colored By plane=velocity (Time=1.2600e+00) Aug 13, 2001 FLUENT 5.4 (3d, segregated, LES, unsteady)

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Velocity Vectors Colored By Axial Velocity (m/s) (Time=1.6600e+00) Aug 13, 2001 FLUENT 5.4 (3d, segregated, LES, unsteady)

Berechnung der Schmelzenströmung im Induktionstiegelofen: Schmelzenoberfläche (3D transient LES)

Berechnete Zeit: 5 s

Berechnete Zeit: 40 s

Berechnung der Schmelzenströmung im Induktionstiegelofen: Schmelzenoberfläche (3D transient LES)

Contours of Velocity Magnitude (m/s) (Time=1.2600e+00)

Aug 13, 2001 FLUENT 5.4 (3d, segregated, LES, unsteady)

Instationärer Wärme- und Stofftransport in metallischen Schmelzen

Schnitt durch Induktionsofen mit Schmelze

Induktions-Rinnenofen

Quelle: RWE-Information Prozesstechnik

Schmelzen und Gießen von Aluminium im Induktions-Rinnenofen

Quelle: ABB Industrietechnik AG, Dortmund

Hochleistungsinduktor zum Schmelzen von Kupfer und Kupferlegierungen

- Leistung 2400 kW
- Frequenz
- ○50...70 Hz
- Gewicht 15 t

Quelle: ABB

IRO – Größen, Schmelzgut, Frequenzen

Schmelzgut	Größen in t	Leistung in MW	Frequenzen in Hz
Gusseisen	10 135	0,1 3	50 60
Aluminium, AlLeg.	5 70	0,1 6	50 60
Kupfer, Cu-Leg.	5 160	0,5 10	50 60
Zink, Zink-Legierung	10 100	0,2 10	50 60

Induktionsöfen

Wirkungsgrad, Energieverbrauch, Schmelzleistung

Kunde: NE-Schmelzbetrieb			Ofentyp: Rinnenofen		
Einsatzmaterial: MS 58		Frequenz :65 Hz			
Abgusstemperatur: 1050 °C		Sonstiges: Verlustarme Induktoren			
1	Netzanschlussleistung	10150 l	kW	-Trafoverluste (1,5 %)	150 kW
2	Umrichter -Eingangsleistung	100001	kW	-UR-/Kondverluste (5,4 %)	540 kW
3	Umrichter-Ausgangsleistung	9460 k\	W	-Kabelverluste -Kabelanschlussverluste	140 kW - kW
4	Spulenleistung	9320 kW		-Nennspulenverluste (7,5 %)	700 kW
5	Feldleistung	8620 k\	N	-Blechpaketverluste -Sekundärverluste (4%) Verluste/Gewinne beim Schmelzen (/%) *)	40 kW 340 kW - kW
6	Induzierte Leistung	8240 kW		-Wärmeverluste	240 kW
7	Nutzleistung	8000 k\	W	*) Verluste: z. B. durch Unterfü	illung des Ofens
8	Erforderliche Schmelzenergie	165 kW	/h/t	Gewinne: z. B durch kaltes Material unter	
9	Gesamtwirkungsgrad (7/1)	0,79		- Curietemperatur	
10	Spezifischer Energieverbrauch (8/9)	209 kW	/h/t		
11	Schmelzleistung (7/8)	48,5 t/h			4

Induktionsöfen

Wirkungsgrad, Energieverbrauch, Schmelzleistung

Kunde: NE-Schmelzbetrieb Ofent		typ: Tiegelofen			
Einsatzmaterial: MS 58 Fred		Frequ	quenz: 100 Hz		
Abgusstemperatur:1050 °C Son		Sonst	stiges:		
1	Netzanschlussleistung	10150 kW		-Trafoverluste (1,5 %)	150 kW
2	Umrichter-Eingangsleistung	10000 kV	V	-UR-/Kond verluste (5,4 %)	540 kW
3	Umrichter-Ausgangsleistung	9460 kW		-Kabelverluste -Kabelanschlussverluste	160 kW - kW
4	Spulenleistung	9300 kW		-Nennspulenverluste (28 %)	2600 kW
5	Feldleistung	6700 kW		-Blechpaketverluste -Sekundärverluste -Verluste beim Schmelzen (2 %) *)	60 kW 40 kW 130 kW
6	Induzierte Leistung	6470 kW		-Wärmeverluste	170 kW
7	Nutzleistung	6300 kW		*) Verluste:z.B. durch Unterfüllung des Ofens Gewinne: z.B. durch kaltes Material unter Curietemperatur	
8	Erforderliche Schmelzenergie	165 kWh/t			
9	Gesamtwirkungsgrad (7/1)	0,62			
10	Spezifischer Energieverbrauch (8/9)	265 kWh/t			
11	Schmelzleistung (7/8)	38,2 t/h			,

Induktions-Rinnenofen – Vor- und Nachteile

Vorteile

- + Hoher Wirkungsgrad ($\eta_{el} = 95\%$, $\eta_{ges} = 85\%$)
- + Niedriger Blindleistungsbedarf
- + Hohe Abgussgewichte realisierbar
- + Einschmelzen großstückiger Schrotte möglich
- + Leistungszufuhr unabhängig vom Füllstand
- + Schlackefreies Gießen über Siphon

Nachteile

- Restsumpf erfordert ständig Warmhalteenergie
- Aufsichtspersonal in Betriebspausen
- Spülchargen bei Legierungswechsel
- Geringe Badbewegung begrenzt Legierungsarbeit und Einschmelzen von Dünnschrott
- Reinigung des Induktorkanals erforderlich

Schema einer druckgasbetätigten Gießeinrichtung

- 1 Druckkessel mit Schmelze
- 2 Rinneninduktor
- 3 Eingussstutzen
- 4 Ausgussstutzen

- 5 Stopfenbetätigung mit Ausgussstein
- 6 Niveaumessung in der Ausgussrinne
- 7 Grundrahmen mit Längs- und Querfahrwerk
- 8 Gießform

Quelle: RWE-Information Prozesstechnik

MF-Umrichter-Parallelbetrieb

Schmelzen 2

- 1. Schmelzen hochreiner Metalle im KIT
- 2. Schmelzen schwachleitfähiger Materialien

Kaltwand-Induktions-Tiegelofen (KIT)

Kaltwand-Induktions-Tiegelofen (KIT)

Kaltwand-Induktions-Tiegelofen - Untersuchungsgegenstände

- Überhitzung der Schmelze entscheidend für Gußqualität
- Verständnis der physikalischen Vorgänge
- Optimierung mittels mathematischer Modelle

Experimentelle Untersuchungen

- elektrischer Wirkungsgrad
- TiAl-Badkuppengeometrie
- Strömungsgeschwindigkeit
- Schmelzentemperatur
- instationäre Vorgänge
- Energiebedarf

Quelle: RWE-Information Prozesstechnik

KIT-Anordnung & Badkuppen

- Schmelzengeometrie von EM-Kraftdichte bestimmt
- ausgeprägte Badkuppenkontur führt zu:
 - sinkender EM-Kopplung
 - abnehmenden therm. Verlusten (Leitungsverluste >> Strahlungsverluste))

möglichst wenig Wandkontakt der Schmelze bei möglichst geringem Abstand zur Tiegelwand

Gießbaum und TiAl-Ventile - Motorischer Test

Geschwindigkeitsverteilungen

Überhitzungsverteilungen

Resultat eines transienten 3D LES-Modells

Resultat eines transienten 3D LES-Modells

Induktive Skull Melting Technology (ISMT)

- → Schmelzen bei hohen Temperaturen (>3000 °C) in einem Induktortiegel oder Kalten Tiegel
- Oxide, Glas und Keramik
 - sind bei Raumtemperatur Isolatoren
 - starker Anstieg der Leitfähigkeit mit steigender Temperatur
 - Kopplung nahe des Schmelzbereichs
 - Vorerwärmung nötig
- → Vorwärmmethoden
 - z.B. induktive Erwärmung von eingebetteten, leitfähigen Materialien im Ausgangsmaterial
 - z.B. durch einen Gasbrenner
- Starke Kühlung von Induktor und Boden
 - Ausbildung eines "Skulls"
 - Skull schützt gegen Verunreinigunge

Induktortiegel und Kalter Tiegel

Inductor crucible (Model)

Cold crucible

Installation am Institut für Elektroprozesstechnik (Uni Hannover)

Startprozess

- Graphitring auf der Oberfläche
- Muss möglichst schnell wieder entnommen werden
- Reagiert mit CuO

- Zr-Metallstücke eingebettet in das Material
- Reagiert mit Sauerstoff zu ZrO₂
- Sehr schneller Startprozess

Schmelzen von ZrO₂

Aufbau einer Induktionsspule zur Blöckchenerwärmung

- 1 Werkstücke
- 2 Tragrohrschiene (wassergekühlt)
- 3 Hubrohrschiene (wassergekühlt) mit Bewegungsverlauf
- 4 Schutzblech (längsgeschlitzt)
- 5 keramisches Wärmedämmmaterial
- 6 Spulenleiter (Kupferhohlprofil, wassergekühlt)
- 7 Rückschlussjoch (Trafoblech)
- 8 Halterungselemente
- 9 Blechmantel

Induktive Schmiedeblock-Erwärmungsanlage

Quelle: AEG-Elotherm

Kompakt-ELOMAT-BTH für die induktive Blöckchenerwärmung Treibrollenvorschub, 60 – 2400 kW, 0,5 – 10 kHz

Rohrendenerwärmung im Rohrwerk

Quelle: ABB

Kompakt-Hubbalken-Erwärmer

Kompakt-Hubbalken-Erwärmer 1800 kW, 4000 kg/h, 60-130 mm Vierkant

Quelle: ABB

Volumenleistungsdichte

Induzierte Volumenleistungsdichte in Abhängigkeit vom Verhältnis d δ bei konstanter Frequenz und Variation des Werkstückdurchmessers

Quelle: RWE-Information Prozesstechnik

Typischer Temperaturverlauf bei der induktiven Schmiedeblock-Erwärmung

Einfluss der Schnellerwärmung

Anwendungsbeispiele:

Lineare Erwärmung – Nenndurchsatz

Anwendungsbeispiele:Lineare Erwärmung – Reduzierter Durchsatz

<u>Anwendungsbeispiele</u>: Lineare Erwärmung – Reduzierter Einsatzquerschnitt

Anwendungsbeispiele:

Nichtlineare Erwärmung - Nenndurchsatz

Anwendungsbeispiele:Enthalpiegesteuerte Zonenheizung - Nenndurchsatz

Anwendungsbeispiele: Padialo Tomporaturverteilung

Induktives Erwärmen - Warmformen

Temperaturverteilung beim Aufheizen zylindrischer Körper

Kurve höchstel Temperaturen ઝ 30 20 Radius (mm) f=1kHz Radius (mm) f=10 kHz

Energiefluss bei einem induktiven Schmiedeblock-Erwärmer

Quelle: RWE-Information Prozesstechnik

Induktives Erwärmen – Temperatur für Umformen

Der klassische Temperaturbereich für Schmiedeprozesse liegt bei ca.1250°C (abhängig von Material und Umformgrad)

Neben des typischen Temperaturbereichs können auch andere Temperaturen für Umformprozesse eingesetzt werden:

	Halbwarmumformung	Thixoforming
Temperatur	200°C – 850°C	Solid-Liquid-Übergang
Material	Edelstahl, Legierungsstähle, Titan, Inconel (NiCr-Legierung)	Magnesium, Aluminium, teilweise Stahl
Vorteile	Geringer EnergiebedarfKeine Gefügeveränderung	ein einziger Umformschrittgeringe mechanische Belastung auf Umformwerkzeuge
Nachteile	 Temperaturführung nötig Höhere Beanspruchung der Werkzeuge, ggf. mehrere Umformschritte 	- Hoher Energiebedarf- Sehr genaue Temperaturführung nötig