Inhalt der Vorlesung Numerische Simulation elektrothermischer Prozesse

- 1. Einführung / Übersicht über Verfahren / Simulation zur Wirtschaftlichkeitsanalyse
- 2. Grundlagen der Wärmelehre, Simulation von Temperaturfeldern
- 3. Energieeffizienz / Konduktive Erwärmung (Praxis und Simulation)
- 4. Maxwell-Gleichungen / Leistungsumsetzung / Wirkungsgrad
- 5. Induktionserwärmung 1: Umrichter, Schmelzöfen, Schmieden Umrichter, ITO, IRO, Skull, Volumenleistungsdichte, Zonensteuerung
- 6. Induktionserwärmung 2: Querfeld, Härten, Schweißen
- 7. Induktionserwärmung 3: Simulation (Praxis und Übung)
- 8. Indirekte Erwärmung / Hybrid-Verfahren
- 9. Dielektrische Erwärmung (Praxis und Simulation)
- 10. Organisatorisches, Übungen, Fragen & Antworten

Quelle: SMS Elotherm

- Anwendungen der induktiven Erwärmung Überblick
- Vorteile einer Schwingkreislast
- Schwingkreisumrichter

Quelle: SMS Elotherm

Vorteile einer Schwingkreislast

- Wenn der Schwingkreis von einer Wechselstromquelle gespeist wird, deren Frequenz der Resonanzfrequenz des Schwingkreises gleicht, wird der Induktorblindstrom vollständig vom Kondensatorstrom kompensiert.
- In diesem Fall muss die Stromquelle nur die im Werkstück verbrauchte Energie nachliefern. Sie wird nicht mit Blindleistung belastet.

Quelle: SMS Elotherm

Schwingkreisumrichter

- Parallelschwingkreisumrichter
- Serienschwingkreisumrichter
- Umrichter mit L-LC-Lastschaltung
- Leistungshalbleiter f
 ür Schwingkreisumrichter

Quelle: SMS Elotherm

Leistungshalbleiter für Schwingkreisumrichter

- Thyristor
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor Field Effect Transistor

Quelle: SMS Elotherm

Leistungshalbleiter für die Schwingkreisumrichter

- IGBT :
 - Abschaltbar
 - Frequenzbereich >= 200kHz
 - IGBT im Entwicklungsfokus
 - Langfristige Lieferbarkeit gesichert

- Frequenzthyristor :
 - Nicht abschaltbar
 - Frequenzbereich <= 10kHz</p>
 - Frequenzthyristoren werden nicht mehr weiter entwickelt
 - Mittelfristig Lieferprobleme zu erwarten

Quelle: SMS Elotherm

Parallelschwingkreisumrichter : Prinzipschaltbild

Quelle: SMS Elotherm

*~//W

Parallelschwingkreisumrichter : Funktionsprinzip

Quelle: SMS Elotherm

Parallelschwingkreisumrichter : Eigenschaften

- + Geeignet f
 ür alle Anwendungen der induktiven Erwärmung
 - + Einsetzbar in sehr großem Frequenzbereich
- + Guter Wirkungsgrad
 - Reduktion der Schaltverluste durch optimierte Kommutierung und "weiches" Schalten der Transistoren ("Soft Switching")
- + In der Regel kein Ausgangstransformator erforderlich
 - Direkter Anschluss der Schwingkreislast an den Wechselrichterausgang möglich
- Leistungssteuerung über den Gleichrichter
- Verschlechterung des Leistungsfaktors bei kleinen Ausgangsspannungen

Quelle: SMS Elotherm

Parallelschwingkreisumrichter : IGBT – Technologie, 3600kW, 1000V, 2kHz

Quelle: SMS Elotherm

Parallelschwingkreisumrichter : MOSFET – Technologie, 800kW, 450V, 400kHz

Quelle: SMS Elotherm

Serienschwingkreisumrichter : Prinzipschaltbild

Quelle: SMS Elotherm

S-and

Serienschwingkreisumrichter : Funktionsprinzip

Quelle: SMS Elotherm

Serienschwingkreisumrichter : Eigenschaften

- + Geeignet f
 ür alle Anwendungen der induktiven Erw
 ärmung
- + Einsetzbar in sehr großem Frequenzbereich
- + Guter Wirkungsgrad
 - Reduktion der Schaltverluste durch lastgeführten Wechselrichter und "weiches" Schalten der Transistoren ("Soft Switching")
- + Leistungssteuerung über den Wechselrichter möglich
- + Ungesteuerter Gleichrichter
- + Guter netzseitiger Leistungsfaktor in allen Betriebszuständen
- Ein Transformator ist f
 ür die Anpassung der Lastimpedanz an die Ausgangsimpedanz des Wechselrichters meist unvermeidbar

Quelle: SMS Elotherm

Serienschwingkreisumrichter : IGBT – Technologie, 2200kW, 800V, 150kHz

Schwingkreis-Umrichter

Reduzierung von Oberschwingungen - I

12-pulsiger Thyristorumrichter

- 1 Leistungsschalter
- 2 Stromrichter-Transformator
- 3 Gleichrichter
- 4 Gleichstrom-Zwischenkreis mit symmetrisch aufgeteilter Glättungsdrossel

- 5 Wechselrichter
- 6 Parallelkondensatorbatterie
- 7 Starteinrichtung
- 8 Induktionsspule

Reduzierung von Oberschwingungen - II

Oberschwingung	6-pulsig < 2 MW	12-pulsig 2 6 MW	24-pulsig >6 MW
5.	18,6	1,8	1,8
7.	12,4	1,1	1,1
11.	6,4	5,6	0,6
13.	4,6	3,8	0,4
17.	2,2	0,2	0,2
19.	1,5	0,1	0,1
23.	0,6	0,7	0,7
25.	0,6	0,7	0,7

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter : Prinzipschaltbild

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter : Funktionsprinzip

Quelle: SMS Elotherm

Induktorbetrieb am PWM-Umrichter : Eigenschaften

- + Die Frequenz kann während des Betriebs kontinuierlich verändert werden
- + Frequenz und Leistung sind über den Wechselrichter steuerbar
- + Ungesteuerter Gleichrichter
- Der Wechselrichter muss f
 ür den vollen Blindstrom des Induktors bemessen werden
- Schlechter Wirkungsgrad
- Hohe Kosten im Vergleich zu Schwingkreisumrichter gleicher Leistung

Induktives Schmelzen - Ofentypen

TECHNISCHE UNIVERSITÄT DARMSTADT

Induktions-Tiegelofen

- 1 Induktionsspule
- 2 Stampfmasse
- 3 Schmelze
- 4 Richtung der Badbewegung
- 5 Badüberhöhung
- 6 Wärmeisolierung

Induktions-Rinnenofen

- Quelle: RWE-Information Prozesstechnik
- Überwiegend Schmelzaggregat
- Mittlerer Wirkungsgrad
- Frequenzen: 50 ... 1000 Hz

- O Überwiegend Warmhalteaggregat
- Hoher Wirkungsgrad
- O Frequenzen: 50 Hz, 60 Hz

Zustellungen von Induktionstiegelöfen

Betone (Boden, Spulen-Druckringe)

- →druckfest
- →Temperaturwechselfest
- →elektrisch isolierend
- Bindung bereits bei niedrigen Temperaturen erforderlich
- →geringer Wassergehalt

Verschleißfutter (Tiegel):

- ➔resistent gegen chemische Einflüsse
- ➔Temperaturfest, temperaturwechselfest
- ➔abriebfest (starke Schmelzenströmung)
- ➔gute thermische Isolation
- ➔geringe Neigung zur Rissbildung
- →Optimal:
 - hohe Festigkeit (Sinterung) an der Oberfläche,
 - geringe Festigkeit (Rieselfestigkeit) vor Spule, realisiert durch trocken gestampfte Tiegel
- Kompromiss bezüglich thermischer Isolierung, elektromagnetischer Kopplung und Verschleißdicke

Zustellungen von Induktionsrinnenöfen

Kessel:

- hohes thermisches Isolationsverhalten (Isolier-steine zum Stahlkessel hin)
- ➔hohe Temperaturfestigkeit zur Schmelze → Mehrschicht-Aufbau

Induktor:

- →sehr hohe Temperaturfestigkeit
- geringe Infiltrationsneigung (hohe Dichte)
- ➔hohe Temperaturwechselfestigkeit
- ➔gute Kühlung am Kühlmantel und Gehäuse, um Durchsinterung zu vermeiden

Ausführungsarten der Zustellungen

TECHNISCHE UNIVERSITÄT DARMSTADT

Induktionstiegelofen: gestampfte Tiegel:

- Gusseisen: SiO₂
- Stahl: SiO₂/Al₂O₃
- AI: AI₂O₃
- Cu: Mullite $(SiO_2 + AI_2O_3)/AI_2O_3$
- Betone: Low Cement

Fertigtiegel:

- AI_2O_3 , SiO_2

Induktionsrinnenofen:

Kessel:

- Gusseisen: MgO/Al₂O₃spinellbildend
- Cu: Al₂O₃

Induktor:

MgO/Al₂O₃-spinellbildend SiO₂ nicht geeignet wegen zu geringer Temperaturfestigkeit

Temperaturbeständigkeit: MgO > Al2O3 > SiO2 Kosten (€/t): MgO (6000) > Al2O3 (2500) > SiO2 (250)

Elektrotechnische Grundlagen in Induktionsschmelzöfen

Stromdichte in der Schmelze in A/m²: Elektromagnetische Eindringtiefe in m: Leistungsumsetzung in der Schmelze in W:

Elektromagnetischer Druck auf die Schmelze: Badüberhöhung in m: Abhängigkeit der Badüberhöhung von der Frequenz: Abhängigkeit der Strömung von der Frequenz:

Scheinleistung in kVA: Wirkleistung in kW: Blindleistung in kVA: Leistungsfaktor:

Elektrischer Wirkungsgrad:

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 27

 $P_W = U \cdot I \cdot \cos \varphi$

 $P_{R} = U \cdot I \cdot \sin \varphi$

 $S = U \cdot I$

 $\cos \phi$

 $P_i = \rho / \delta \cdot A \cdot H^2$ $p = \frac{1}{2} \cdot \frac{P_i}{A} \cdot \sqrt{\frac{\mu}{(\pi \rho f)}}$ $h_{ii} = p/\gamma$ $1/f^{0,5} = 1/\sqrt{f}$ $1/f^{0,7}...1/f^{0,9}$

 $S_x = S_0 \cdot e^{-x/\delta}$

 $\delta = \sqrt{\rho/(\pi\mu f)}$

Induktives Schmelzen - Anwendung

Induktions-Tiegelofen mit Randabsaugung

 Schmelzen: Gusseisen, Stahl, Schwermetalle, Leichtmetalle 30 t-Induktions-Rinnenofen

Schmelzanlage für Gusseisen

Mittelfrequenz-Induktions-Tiegelofen

- Fassungsvermögen:je 6t
- Anschlussleistung:
 je 3300 kW / 250 Hz

Quelle: ABB Industrietechnik AG, Dortmund

Vorteile des Mittelfrequenz-Hochleistungs-Schmelzens

kurze Schmelzzeiten

hoher Durchsatz

ogeringe Wärmeverluste

hoher Prozesswirkungsgrad

okurze Reaktionszeit zwischen Schmelze und Tiegelzustellung

<u>Beispiele</u> für erfolgreiches und betriebssicheres Schmelzen mit Hochleistungs-Mittelfrequenz-Tiegelöfen:

Ofenleistung von 6000 kW bei 6 t GG und 250 Hz seit 1989
Ofenleistung von 9300 kW bei 12 t GG und 220 Hz seit 1992
Ofenleistung von 16000 kW bei 20 t GG und 220 Hz seit 1999

GG: Grauguss

ITO – Größen, Schmelzgut, Frequenzen

	Schmelzgut	Größen in t	Leistung in MW	Frequenzen in Hz
NF-Öfen:	Gusseisen, Stahl	1,3 100	0,5 21	50 60
	Leichtmetalle	0,5 15	0,2 4	50 60
	Schwermetalle	1,5 40	0,5 7	50 60
MF-Öfen:	Gusseisen, Stahl	0,25 30	0,3 16	150 1000
	Leichtmetalle	0,1 8	0,2 4	90 1000
	Schwermetalle	0.3 70	0.3 16	65 1000

NF: Niederfrequenz, MF: Mittelfrequenz

Induktionsöfen Wirkungsgrad, Energieverbrauch, Schmelzleistung

TECHNISCHE UNIVERSITÄT DARMSTADT

-amm

Ku	Kunde: Gießerei XY		Ofentyp: IT 7 (15 t)		
Einsatzmaterial: GG		Frequenz: 50 Hz			
Ab	Abgusstemperatur: 1500 °C		Sonstiges: Sumpfbetrieb 40 %		
1	Netzanschlussleistung	4500 k	W	-Trafoverluste (1,5 %)	-70 kW
2	Kondensator-Eingangsleistung	4430 k	W	-UR-/Kondverluste(1 %)	-40 kW
3	Kondensator-Ausgangsleistung	4390 k	W	-Kabelverluste -Kabelanschlussverluste	-75 kW -5 kW
4	Spulenleistung	4310 k	W	-Nennspulenverluste (19%)	-820 kW
5	Feldleistung	3490 k\	W	-Blechpaketverluste -Sekundärverluste (%) -Verluste beim Schmelzen (6 %)*)	-20 kW -10 kW -210 kW
6	6 Induzierte Leistung		W	-Wärmeverluste	-140 kW
7	7 Nutzleistung		N	*) Verluste: z.B. durch <u>Unterfüllung</u> des Ofens Gewinne: z.B. durch kaltes Material unter Curietemperatur	
8	8 Erforderliche Schmelzenergie		/h/t		
9	9 Gesamtwirkungsgrad (7/1)				
10	10 Spezifischer Energieverbrauch (8/9)		/h/t		
11	Schmelzleistung (7/8)*0,85 keine Konstantleistung	6,9 t/h			

Induktionsöfen Wirkungsgrad, Energieverbrauch, Schmelzleistung

TECHNISCHE UNIVERSITÄT DARMSTADT

Kunde: Gießerei XY			Ofentyp: IFM 7 (15 t)			
Einsatzmaterial: GG			Frequenz: 250 Hz			
Abgusstemperatur: 1500 °C			Sonstiges: Chargenbetrieb Konstantleistung			
1	Netzanschlussleistung	10000 kW		-Trafoverluste (1,5 %)	-150 kW	
2	Umrichter-Eingangsleistung	9850 kW		-UR_/Kondverluste (4 %)	-390 kW	
3	Umrichter-Ausgangsleistung	9460 kW		-Kabelverluste -Kabelanschlussverluste	-200 kW -10 kW	
4	Spulenleistung	9250 kW		-Nennspulenverluste (19 %)	-1760 kW	
5	Feldleistung	7490 kW		-Blechpaketverluste -Sekundärverluste (%) -Gewinne beim Schmelzen (5 %) *)	-60 kW -20 kW +370 kW	
6	Induzierte Leistung	7780 kW		-Wärmeverluste	-120 kW	
7	Nutzleistung	7660 kW		*) Verluste: z. B. durch Unterfüllung des Ofens		
8	Erforderliche Schmelzenergie	385 kWh/t		Gewinne: z. B. durch <u>kaltes Material</u> unter Curietemperatur (Batch-Faktor)		
9	Gesamtwirkungsgrad (7/1)	0,766				
10	Spezifischer Energieverbrauch (8/9)	503 kWh/t				
11	Schmelzleistung (7/8)	19,9 t/h				

Badbewegung beim ITO

Quelle: RWE-Information Prozesstechnik

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Instationäre 3D-LES-Simulation der Strömungsgeschwindigkeit in einem industriellen Induktionstiegelofen

Berechnung der Schmelzenströmung im Induktionstiegelofen: Schmelzenoberfläche (3D transient LES)

Berechnete Zeit: 5 s

Berechnete Zeit: 40 s

TECHNISCHE UNIVERSITÄT

DARMSTADT

Berechnung der Schmelzenströmung im Induktionstiegelofen: Schmelzenoberfläche (3D transient LES)

Instationärer Wärme- und Stofftransport in metallischen Schmelzen

Schnitt durch Induktionsofen mit Schmelze

Induktions-Rinnenofen

Quelle: RWE-Information Prozesstechnik

Schmelzen und Gießen von Aluminium im Induktions-Rinnenofen

Quelle: ABB Industrietechnik AG, Dortmund

Hochleistungsinduktor zum Schmelzen von Kupfer und Kupferlegierungen

IRO – Größen, Schmelzgut, Frequenzen

Schmelzgut	Größen in t	Leistung in MW	Frequenzen in Hz
Gusseisen	10 135	0,1 3	50 60
Aluminium, AlLeg.	5 70	0,1 6	50 60
Kupfer, Cu-Leg.	5 160	0,5 10	50 60
Zink, Zink-Legierung	10 100	0,2 10	50 60

Induktionsöfen Wirkungsgrad, Energieverbrauch, Schmelzleistung

TECHNISCHE UNIVERSITÄT DARMSTADT

MIN

Kunde: NE-Schmelzbetrieb			Ofentyp: Rinnenofen			
Eins	Einsatzmaterial: MS 58 Fre		Freque	Frequenz :65 Hz		
Abgusstemperatur: 1050 °C		Sonstiges: Verlustarme Induktoren				
1	Netzanschlussleistung	10150	٨W	-Trafoverluste (1,5 %)	150 kW	
2	Umrichter - Eingangsleistung	10000 kW		-UR-/Kondverluste (5,4 %)	540 kW	
3	Umrichter-Ausgangsleistung	9460 kW		-Kabelverluste -Kabelanschlussverluste	140 kW - kW	
4	Spulenleistung	9320 kW		-Nennspulenverluste (7,5 %)	700 kW	
5	Feldleistung	8620 k\	N	-Blechpaketverluste -Sekundärverluste (4%) Verluste/Gewinne beim Schmelzen (/%) *)	40 kW 340 kW - kW	
6	Induzierte Leistung	8240 k\	N	-Wärmeverluste	240 kW	
7	Nutzleistung	8000 k\	N	/ *) Verluste: z. B. durch Unterfüllung des Ofens n/t Gewinne: z. B durch kaltes Material unter		
8	Erforderliche Schmelzenergie	165 kW	′h/t			
9	Gesamtwirkungsgrad (7/1)	0,79				
10	Spezifischer Energieverbrauch (8/9)	209 kW	′h/t			
11	Schmelzleistung (7/8)	48,5 t/h				

Induktionsöfen Wirkungsgrad, Energieverbrauch, Schmelzleistung

TECHNISCHE UNIVERSITÄT DARMSTADT

MI

Kunde: NE-Schmelzbetrieb Ofer			Ofent	entyp: Tiegelofen		
Ein	Einsatzmaterial: MS 58 Frequ		uenz: 100 Hz			
Abg	gusstemperatur:1050 °C		Sonst	stiges:		
1	Netzanschlussleistung	10150 kW		-Trafoverluste (1,5 %)	150 kW	
2	Umrichter-Eingangsleistung	10000 kW		-UR-/Kond verluste (5,4 %)	540 kW	
3	Umrichter-Ausgangsleistung	9460 kW		-Kabelverluste -Kabelanschlussverluste	160 kW - kW	
4	Spulenleistung	9300 kW		-Nennspulenverluste (28 %)	2600 kW	
5	Feldleistung	6700 kW		-Blechpaketverluste -Sekundärverluste -Verluste beim Schmelzen (2 %) *)	60 kW 40 kW 130 kW	
6	Induzierte Leistung	6470 kW		-Wärmeverluste	170 kW	
7	Nutzleistung	6300 kW	/	*) Verluste:z.B. durch Unterfüllung des Ofens Gewinne: z.B. durch kaltes Material unter Curietemperatur		
8	Erforderliche Schmelzenergie	165 kWł	n/t			
9	Gesamtwirkungsgrad (7/1)	0,62				
10	Spezifischer Energieverbrauch (8/9)	265 kWł	n/t			
11	Schmelzleistung (7/8)	38,2 t/h				

Induktions-Rinnenofen – Vor- und Nachteile

Vorteile

- + Hoher Wirkungsgrad ($\eta_{el} = 95\%$, $\eta_{ges} = 85\%$)
- + Niedriger Blindleistungsbedarf
- + Hohe Abgussgewichte realisierbar
- + Einschmelzen großstückiger Schrotte möglich
- + Leistungszufuhr unabhängig vom Füllstand
- + Schlackefreies Gießen über Siphon

- Restsumpf erfordert ständig Warmhalteenergie
- Aufsichtspersonal in Betriebspausen
- Spülchargen bei Legierungswechsel
- Geringe Badbewegung begrenzt Legierungsarbeit und Einschmelzen von Dünnschrott
- Reinigung des Induktorkanals erforderlich

Schema einer druckgasbetätigten Gießeinrichtung

5 Stopfenbetätigung mit Ausgussstein

6 Niveaumessung in der Ausgussrinne

7 Grundrahmen mit Längs- und Querfahrwerk

- 1 Druckkessel mit Schmelze
- 2 Rinneninduktor
- 3 Eingussstutzen
- 4 Ausgussstutzen
 - Quelle: RWE-Information Prozesstechnik

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 48

8 Gießform

MF-Umrichter-Parallelbetrieb

TECHNISCHE UNIVERSITÄT DARMSTADT

MMA

Schmelzen 2

- 1. Schmelzen hochreiner Metalle im KIT
- 2. Schmelzen schwachleitfähiger Materialien

Kaltwand-Induktions-Tiegelofen (KIT)

Kaltwand-Induktions-Tiegelofen (KIT)

Kaltwand-Induktions-Tiegelofen - Untersuchungsgegenstände

- Überhitzung der Schmelze entscheidend für Gußqualität
- Verständnis der physikalischen Vorgänge
- Optimierung mittels mathematischer Modelle

Experimentelle Untersuchungen

- elektrischer Wirkungsgrad
- TiAl-Badkuppengeometrie
- Strömungsgeschwindigkeit
- Schmelzentemperatur
- instationäre Vorgänge
- Energiebedarf

Quelle: RWE-Information Prozesstechnik

KIT-Anordnung & Badkuppen

Gießbaum und TiAl-Ventile – Motorischer Test

TECHNISCHE

Überhitzungsverteilungen

Resultat eines transienten 3D LES-Modells

Resultat eines transienten 3D LES-Modells

712.000		
706.545		
701.091		
695.636		
690.182		
684.727		
679.273		
673.818	Acres 10	
668.364		
662.909		
657.455	and the second second	
652.000	Anno manifetta	- Statements

Induktive Skull Melting Technology (ISMT)

- Schmelzen bei hohen Temperaturen (>3000 °C) in einem Induktortiegel oder Kalten Tiegel
- Oxide, Glas und Keramik
 - sind bei Raumtemperatur Isolatoren
 - starker Anstieg der Leitfähigkeit mit steigender Temperatur
 - Kopplung nahe des Schmelzbereichs
 - Vorerwärmung nötig
- Vorwärmmethoden

 z.B. induktive Erwärmung von eingebetteten, leitfähigen Materialien im Ausgangsmaterial
 - z.B. durch einen Gasbrenner
- Starke K
 ühlung von Induktor und Boden
 - Ausbildung eines "Skulls"
 - Skull schützt gegen Verunreinigungen

Induktortiegel und Kalter Tiegel

Inductor crucible (Model)

Cold crucible

Installation am Institut für Elektroprozesstechnik (Uni Hannover)

Startprozess

- → Graphitring auf der Oberfläche
- Muss möglichst schnell wieder entnommen werden
- Reagiert mit CuO

- Zr-Metallstücke eingebettet in das Material
- Reagiert mit Sauerstoff zu ZrO₂
- → Sehr schneller Startprozess

Schmelzen von ZrO₂

Aufbau einer Induktionsspule zur Blöckchenerwärmung

- 1 Werkstücke
- 2 Tragrohrschiene (wassergekühlt)
- 3 Hubrohrschiene (wassergekühlt) mit Bewegungsverlauf
- 4 Schutzblech (längsgeschlitzt)
- 5 keramisches Wärmedämmmaterial
- 6 Spulenleiter (Kupferhohlprofil, wassergekühlt)
- 7 Rückschlussjoch (Trafoblech)
- 8 Halterungselemente
- 9 Blechmantel

Induktive Schmiedeblock-Erwärmungsanlage

Treibrollenvorschub, 60 – 2400 kW, 0,5 – 10 kHz

Quelle:

Rohrendenerwärmung im Rohrwerk

TECHNISCHE UNIVERSITÄT DARMSTADT

Kompakt-Hubbalken-Erwärmer

Kompakt-Hubbalken-Erwärmer 1800 kW, 4000 kg/h, 60-130 mm Vierkant

Quelle: ABB

Induzierte Volumenleistungsdichte in Abhängigkeit vom Verhältnis d/δ bei konstanter Frequenz und Variation des Werkstückdurchmessers

Quelle: RWE-Information Prozesstechnik

Typischer Temperaturverlauf bei der induktiven Schmiedeblock-Erwärmung

Einfluss der Schnellerwärmung

Anwendungsbeispiele: Lineare Erwärmung – Nenndurchsatz

<u>Anwendungsbeispiele</u>: Lineare Erwärmung – Reduzierter Durchsatz

· amm

<u>Anwendungsbeispiele</u>: Lineare Erwärmung – Reduzierter Einsatzquerschnitt

TECHNISCHE UNIVERSITÄT DARMSTADT

· amm

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 73

Anwendungsbeispiele: Nichtlineare Erwärmung - Nenndurchsatz

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 74

<u>Anwendungsbeispiele</u>: Enthalpiegesteuerte Zonenheizung - Nenndurchsatz

TECHNISCHE UNIVERSITÄT DARMSTADT

- amm

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 75

TU Darmstadt, Institut für Elektrische Energiewandlung | Dr.-Ing. J. Neumeyer | basierend auf Prof. B. Nacke/ Uni Hannover 05/ Seite 76

Induktives Erwärmen - Warmformen

Temperaturverteilung beim Aufheizen zylindrischer Körper

Quelle: RWE-Information Prozesstechnik

Energiefluss bei einem induktiven Schmiedeblock-Erwärmer

Induktives Erwärmen – Temperatur für Umformen

Der klassische Temperaturbereich für Schmiedeprozesse liegt bei ca.1250°C (abhängig von Material und Umformgrad) Neben des typischen Temperaturbereichs können auch andere Temperaturen für Umformprozesse eingesetzt werden:

	Halbwarmumformung	Thixoforming
Temperatur	200°C – 850°C	Solid-Liquid-Übergang
Material	Edelstahl, Legierungsstähle, Titan, Inconel (NiCr-Legierung)	Magnesium, Aluminium, teilweise Stahl
Vorteile	 Geringer Energiebedarf Keine Gefügeveränderung 	 ein einziger Umformschritt geringe mechanische Belastung auf Umformwerkzeuge
Nachteile	 Temperaturführung nötig Höhere Beanspruchung der Werkzeuge, ggf. mehrere Umformschritte 	 Hoher Energiebedarf Sehr genaue Temperaturführung nötig

