# Inhalt der Vorlesung Numerische Simulation elektrothermischer Prozesse



- 1. Einführung / Übersicht über Verfahren / Simulation zur Wirtschaftlichkeitsanalyse
- 2. Grundlagen der Wärmelehre, Simulation von Temperaturfeldern
- 3. Energieeffizienz / Konduktive Erwärmung (Praxis und Simulation)
- 4. Maxwell-Gleichungen / Leistungsumsetzung / Wirkungsgrad
- 5. Induktionserwärmung 1: Umrichter, Schmelzöfen, Schmieden
- 6. Induktionserwärmung 2: Querfeld, Härten, Schweißen Querfeld, Randschichthärten, Zweifrequenz, HFI
- 7. Induktionserwärmung 3: Simulation (Praxis und Übung)
- 8. Indirekte Erwärmung / Hybrid-Verfahren
- 9. Dielektrische Erwärmung (Praxis und Simulation)
- 10. Organisatorisches, Übungen, Fragen & Antworten



# **Induktives Erwärmen - Flachgut**



#### Induktive Längsfelderwärmung

#### Induktive Querfelderwärmung



- Magn. Fluss parallel zum Vorschub
- Sehr hohe Frequenzen
- Variable Temperaturgestaltung nicht möglich



- Magn. Fluss senkrecht zum Vorschub
- Geringe Betriebsfrequenz
- Temperaturgestaltung über Induktorgeometrie und Frequenz möglicht



# Erwärmung von dünnen Blechen und Bändern











### Induktive Querfeld-Banderwärmung





# **Optimierung verteilter Größen**

oberer

**→** y

as

X

Induktor

unteres

**Blechpaket** 

Vorschub

Blech

 $k = a_S / a_R$ 

b



Ergebnis

462 mm

122 mm

220 mm

255 Hz)

0,6

Designvariablen Grenzen Induktorlänge b 350 mm - 600 mm Leiterbreite *a*<sub>*R*</sub> 32 mm - 160 mm Spulenkopffaktor k 0,3 - 1,5 Polbreite *t* 80 mm - 300 mm

Minimum der Zielfunktion:

(Frequenz *f* =*f*opt

190 Hz - 700 Hz



## **Ergebnis der Temperaturoptimierung**







# Induktive Wärmebehandlung - Härten



Induktive Randschichthärtung

- Qualitätssteigerung von Bau- und Konstruktionsteilen
- Sehr schnelles Erwärmen und sofortiges Abschrecken
- Erwärmungstiefe gezielt beeinflussbar über:
  - > Frequenz
  - elektrische Leistung
  - Einwirkzeit

Induktionshärteanlage mit Induktor, Brause und Werkstück



Quelle: RWE-Information Prozesstechnik



## Induktive Wärmebehandlung - Härten



#### Induktives Härten einer Kurbelwelle



Schliffbilder verschiedener induktiv gehärteter Teile



Quelle: RWE-Information Prozesstechnik



#### Induktoren für induktives Härten





Quelle: STEREMAT Elektrowärme GmbH





## Temperatur-Zeit-Diagramm eines Induktionshärteprozesses







# Induktive Zahnradhärteverfahren









#### **Kettenrad aus Sinterstahl**





## Induktives Randschichthärten von Getriebeschnecken







Ziel: konturnahes gleichmäßiges Erwärmen

→ zum Erreichen eines gleichmäßigen Härteprofils an der Oberfläche



# Simulationsmodell



- Symmetriebedingungen:
  - Ianger Induktor
  - 180° in Umfangsrichtung
  - Steigungswinkel der Schnecke nicht berücksichtigt

#### Gitternetz:

- im Oberflächenbereich: feines Netz erforderlich
- Vorgegebene Randbedingungen:
  - Heizzeit
  - Maximale Temperatur: 950 °C
  - Rotation der Schnecke

Mesh of Simulation Model



#### Angepasst über die Stromdichte



# **Erwärmung mittels Einfrequenzverfahren**







f = 100 kHz, t = 1 s

#### Einfrequenzverfahren - Zusammenfassung





- > Arbeitsfrequenz beeinflusst die Erwärmungszone
- Beim Randschichthärten von Getriebeschnecken erlaubt das Einfrequenzverfahren keine optimale Lösung



## Einfluss der Erwärmungszeit

TECHNISCHE UNIVERSITÄT DARMSTADT



Schlussfolgerungen

- je kürzer die Erwärmung, desto kontur- und oberflächennaher erfolgt die Erwärmung
- Kompromiss häufig aufgrund der Generatorleistung erforderlich



# Zweifrequenzverfahren



TECHNISCHE UNIVERSITÄT DARMSTADT

#### Grundidee:

- HF erwärmt bevorzugt die Zahnspitze
- SMF erwärmt dagegen bevorzugt den Zahnzwischenraum
- die Überlagerung der beiden Effekte kann zu einer optimierten konturnahen Erwärmung führen

#### Verfügbare Techniken:

- zeitversetzte Speisung des Induktors mit MF- und HF-Leistung oder
- simultane Speisung mit MF- and HF-Leistung
- Cesamtleistung und Verhältnis von MF- zu HF-Leistung ist variabel
- Erforderliche Erweiterungen des numerischen Modells:
  - Anpassung des Simulationsprogramms f
    ür Zweifrequenzverfahren
  - Typische Frequenzbereiche: MF 10 .. 30 kHz, HF 100 .. 500 kHz
  - Leistungsverhältnis HF/MF ist variabel
  - Gesamtleistung MF + HF ist konstant



## Zweifrequenzverfahren





HF-/MF-Leistung 35 %, t = 1 s







> Die Erwärmungszone ist über das Leistungsverhältnis MF/HF anpassbar

- Eine konturnahes Erwärmungsprofil kann bei der Schnecke erreicht werden
- > Das Erwärmungsprofil erlaubt, das gewünschte Härteprofil zu erreichen
- Effekte werden nur bei sehr kurzer Heizzeit wirksam



## Experimentelle Härteuntersuchungen









# Vergleich von Temperatur- und Härteverlauf I



TECHNISCHE UNIVERSITÄT DARMSTADT

#### ≻Härteparameter

- Heizzeit: 0,35 s
- Gesamtleistung: 600 kW
- HF-Anteil: 30 %
- ➡ Frequenzen:
  - MF = 12 kHz
  - HF = 300 kHz
- ➢ Ergebnisse
  - Berechnete Temperaturverteilung und Härteverlauf sehr ähnlich
  - ➡ Härtewerte:
    - Zahnspitze: 62.5 HRC
    - Zahnzwischenraum: 66.0 HRC

#### Berechnete Temperaturverteilung







# Vergleich von Temperatur- und Härteverlauf II



#### Simulations- und Härtedaten

- Zweifrequenz-Erwärmung
- Gesamtleistung 600 kW
- Vorheizen:
  - Heizzeit: 0,5 s
  - HF-Anteil: 10 %
  - MF-Anteil: 0 %
- Hauptheizen:
  - Heizzeit: 0,3 s
  - HF-Anteil: 30 %
  - MF-Anteil: 70 %

#### Zusammenfassung



- Cute Übereinstimmung von berechnetem Temperatur- und Härteverlauf
- Der endgültige Härteverlauf kann durch die Simulation des Temperaturverteilung allein bereits sehr gut vorausbestimmt werden

## Verfahren der induktiven Erwärmung am Rohr



Minth



## **Induktives Erwärmen - Fügen**



Längsnahtschweißen von Rohren

- Kontinuierlicher Schweißprozess mit gewalztem Stahlband
- Vorschubgeschwindigkeit: > 150 m/min
- O Außendurchmesser: 9 500 mm





- hohe Schweißgeschwindigkeit
- Erwärmung genau auf die Schweißstelle beschränkt
- saubere Schweißnähte



#### Induktives Erwärmen und Glühen von Rohren





Quelle: RWE-Information Induktive Erwärmung



# **HF-Induktionsschweißen von Rohren**





Quelle: SMS Elotherm



#### Induktives Längsnahtglühen von Rohren





Quelle: SMS Elotherm







· ami