Christian Doppler Labor, TU Graz 12. Dezember 2007

Verlustberechnung und experimentelle Validierung bei hochausgenützten Permanentmagnet-Synchronmaschinen mit Zahnspulenwicklungen und Feldschwächbetrieb

Andreas Binder & Csaba Deak

Darmstadt University of Technology Dept. of Electrical Energy Conversion

Landgraf-Georg-Strasse 4, D-64283, Darmstadt

E-Mail: abinder@ew.tu-darmstadt.de cdeak@ew.tu-darmstadt.de

Andreas Binder 1 / 57

Overview

- Introduction
- Considered PM synchronous motors
- Basic design
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

Modular synchronous machine

Permanent - Magnet motors:

- high torque
- reduced active mass
- reduced rotor losses

Tooth-wound coils:

- short winding overhang
- small resistance (reduced stator losses)
- compact design

Design of 3 PM motors:

- Constant power: 45 kW
- Phase voltage: 230V
- Rated speed: 1000 /min
- Maximum speed: 3000 /min

Andreas Binder 3 / 57

High-torque Antriebe für höhere Drehzahlen

- Zahnspulentechnologie und Permanentmagnetläufer :
 - kompakte Statoren
 - niedrige Stromwärmeverluste
 - hohe Induktivität für gute Feldschwächbarkeit
 - hohe Kraftdichte
- Genutzt für Servoantriebe, High-torque-Antriebe !
- Auch nutzbar für Industrieantriebe mit höheren Drehzahlen ?

High-torque Antriebe für höhere Drehzahlen

Energiewandlung

Andreas Binder 5 / 57

DARMSTADT

Considered PM synchronous motors

Surface mounted magnets

Motor D

- 1 magnet / pole

Buried magnets

24 semi-closed stator slots / 16 poles

Andreas Binder 6 / 57 TECHNISCHE UNIVERSITÄT DARMSTADT

Considered PM synchronous motors

24 open stator slots / 16 poles

Andreas Binder 7 / 57 TECHNISCHE UNIVERSITÄT DARMSTADT

High-torque Antriebe für höhere Drehzahlen

Alternative Motorkonzepte:16-polige StatorenVariante A:q = 0.5Variante G:q = 0.25

Wirkungsgrad *) 93.7% / 95.3 %

bei 45 kW 1000 / 3000/min

Magnettemperatur 87°C

92.8 % / 93.3 %

1000 / 3000/min

115°C

*) gemessen direkt bei:

Umrichterspeisung, Wärmeklasse F, 45 °C Kühlwasser

Energiewandlung Prof. Dr.-Ing. habil. A. Binder

Zukunftsmarkt: E-Antriebe für Hybrid-Automobile ?

HYBRIDANTRIEBE BOOMEN IN USA UND ASIEN

2010

TECHNISCHE UNIVERSITÄT

2004

DARMSTADT

Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. A. Binder

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

Geometry and winding design

Motor	Α	X	G	Motor	Α	X	G
Stator outer diameter (mm)	314	314	314	Nr. of turns per phase	96	81	60
Stator bore diameter (mm)	181	181	181	Nr. of parallel connections	8	2	4
Active length (mm)	180	180	180	Coils per pole and phase	0.5	0.38	0.25
Number of stator slots	24	18	24	Slot fill factor	0.41	0.39	0.59
Number of poles	16	16	16	Winding factor $(v = 1)$	0.866	0.94	0.98
Air gap (mm)	0.7	0.7	0.5 (= δ_0)	Phase resistance (mQ)*	70	57	48
Bandage (mm)	0.7	0.7	-	* At 145° C		•	••
allb				•			TITI

Institut für Elektrische

Energiewandlung

Andreas Binder

Geometry and winding design

Energiewandlung

13 / 57

Geometry and winding design

Motor	Α	X	G	Motor	Α	X	G
Stator outer diameter (mm)	314	314	314	Nr. of turns per phase	96	81	60
Stator bore diameter (mm)	181	181	181	Nr. of parallel connections	8	2	4
Active length (mm)	180	180	180	Coils per pole and phase	0.5	0.38	0.25
Number of stator slots	24	18	24	Slot fill factor	0.41	0.39	0.59
Number of poles	16	16	16	Winding factor $(v = 1)$	0.866	0.94	0.98
Air gap (mm)	0.7	0.7	0.5 (= δ_0)	Phase resistance $(m\Omega)^*$	70	57	48
Bandage (mm)	0.7	0.7	-	* At 145° C			
AWID							

Institut für Elektrische

Energiewandlung

Andreas Binder

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

No-load operation

Motor A

 $B_{\delta 0(1)} = 0.875 \text{ T}$

Andreas Binder 16 / 57

No-load operation

Motor X

Field distribution

Air gap flux density

Circumferential coordinate (°mech.)

 $B_{\delta 0(1)} = 0.868 \text{ T}$

Andreas Binder 17 / 57

No-load operation

Motor G

 $B_{\delta 0(1)} = 0.87 \text{ T}$

Andreas Binder 18 / 57

Phasor diagrams at rated speed

Comparison of the designed motors

	Mote	or A	Motor X		Motor G	
Speed (1/min)	1000	3000	1000	3000	1000	3000
Constant power (kW)	45	45	45	45	45	45
Phase voltage (V)	230	230	230	230	230	230
Phase current (A)	95	67	103	67	114	68.5
Power factor	0.72	1	0.66	0.98	0.6	0.97
Torque (Nm)	430	143	430	143	430	143
Torque density / active mass (Nm/kg)	5.56	1.85	5.56	1.85	4.77	1.59
Power density / active mass (kW/kg)	0.58	0.58	0.58	0.58	0.5	0.5
Torque ripple(% of rated torque)	7	7.3	1.04	0.7	6.4	2.7
Thermal load $A \cdot J$ (A/cm · A/mm ²)	5683	2827	5131	2156	5142	1834

Andreas Binder 20 / 57

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

2D thermal Models

Andreas Binder 22 / 57

2D thermal Models

Andreas Binder 23 / 57

2D thermal Models

Andreas Binder 24 / 57

Loss distribution

	Mot	or A	Motor X		Motor G	
Speed (1/min)	1000	3000	1000	3000	1000	3000
Copper Losses (at 145 °C) * (W)	2171	1846	2523	3042	2142	1470
Iron losses in teeth * (W)	800	845	669	875	698	1052
Iron losses in yoke * (W)	250	392	284	470	249	346
Magnet losses * (W)	47	158	53	184	32	77
Friction losses (W)	-	-	-	-	-	-
Total losses	3268	3241	3529	4571	3121	2945

* Sinus + inverter supply: Analytical calculation

Heat distribution at rated speed & torque

Heat distribution at rated speed & torque

Heat distribution at rated speed & torque

Design features

- Torque density: 5.56 Nm/kg (motor A & X), 4.77 Nm/kg (motor G)
- Power density: 0.58 kW/kg (motor A & X), 0.5 kW/kg (motor G)
- Increased power factor due to negative d-current supply:
 - 0.64 \rightarrow 0.72 (motor A), 0.58 \rightarrow 0.66 (motor X), 0.52 \rightarrow 0.6 (motor G)
- 2D thermal models (overhang losses in slots included):
 - temperature reserve: 10 K (motor A) & 45 K (motor G)
 - overheating by motor X

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

Built prototype rotors

Rotor 1 with surface mounted segmented magnets Filling the pole gaps

Magnets

Rotor lamination

Rotor 3 with buried segmented magnets

Magnets

Inserting the magnets

Institut für Elektrische Energiewandlung

Andreas Binder 31 / 57

📫 6 x

6 Packages

Bandage

Assembling

DARMSTADT

TECHNISCHE UNIVERSITÄT

Vermeidung von Magnetverlusten: Segmentierte NdFeB-Magnete, Rotor 1

Welle

TECHNISCHE UNIVERSITÄT DARMSTADT

Rotorblechpaket

Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. A. Binder

Built prototype rotors

Rotor 2 with surface mounted non-segmented magnets

Institut für Elektrische Energiewandlung

Andreas Binder 33 / 57

Built prototypes

Heating of the cooling jacket and mounting it on the stator lamination

Andreas Binder 34 / 57

Built prototype stators

Stator

A-D

E-H

Institut für Elektrische Energiewandlung

Andreas Binder 35 / 57

Gemessene Motoren

Institut für Elektrische Energiewandlung

Andreas Binder 36 / 57

Built prototype machines

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

Rotor losses

Permanent - Magnet motors with concentrated windings

Increased eddy current losses in the rotor magnets:

- air gap field pulsations due to the slot openings
- flux pulsations in the magnets at load operation

Segmented Magnets

Calculated: 8 PM motors A, B, C, D, E, F, G, H; Measured: 6! (2 Stators & 4 Rotors): Constant power: 45 kW

> Rated speed: 1000 rpm Maximum speed: 3000 rpm

Andreas Binder 39 / 57

Flux density for Motor A

1000 rpm, no-load operation

FEMAG-DC (no eddy currents considered!)

Andreas Binder 40 / 57

Flux density for Motor A

FEMAG-DC (no eddy currents considered!)

Andreas Binder 41 / 57

Flux density at no-load operation

FEMAG-DC (no eddy currents considered!)

Andreas Binder 42 / 57

Flux density at load operation

FEMAG-DC (no eddy currents considered!)

Andreas Binder 43 / 57

Method 1: FEMAG-DC & Analytical Formula

Vector potential

Current density

$$A_z = \sum_{i=0}^k B_r \quad (i) \cdot \Delta x, \quad k=0...n$$

$$J_{z}(k, t_{j+1}) = -\kappa_{\text{Meff}} \cdot \frac{A(k, t_{j+1}) - A(k, t_{j})}{\Delta t}$$

Alternating current density

$$J_{z}(x) \cdot dx = 0$$
 $J_{z_{\sim}}(k, t_{j+1}) = J_{z}(k, t_{j+1}) - \overline{J_{z}}(t_{j+1})$

Losses in magnets

$$P_{\mathrm{Mu,m,b}} = \int_{V} \frac{J_{z}^{2}}{\kappa_{\mathrm{Meff}}} dV = \sum_{u,m,b} (h_{\mathrm{M}} \cdot \Delta x \cdot l_{\mathrm{M}} \cdot 1/\kappa_{\mathrm{Meff}} \cdot \sum_{k=1}^{n} J_{z}^{2}(k, t_{j+1}))$$

Considered in each of the three surfaces (upper, middle, bottom)

Andreas Binder 44 / 57

Method 2: FEMAG DC - Version 05/2007

- No reaction field of eddy currents considered
- Maxwell equations $rot\vec{E} = -\partial\vec{B}/\partial t$ $\vec{J} = \kappa\vec{E}$
- Fast calculation
- For magnets with rather low conductivity (small eddy currents)

Method 2 is similar to Method 1, but
$$\int_{A_M} J_z(x, y) \cdot dx \cdot dy = 0$$

is considered over the magnet cross section and not only

in the three surfaces

Influence of eddy current reaction field

Penetration depth: $d_{\rm E} = \frac{1}{\sqrt{\kappa_{\rm Mg} \cdot \pi \cdot f_{\rm B,Mg} \cdot \mu_{\rm Mg}}}$

Ratio $b_{\rm Mg} / d_{\rm E} \le 1 \rightarrow$ no eddy current reaction field

Ex.:
$$n = 3000$$
 rpm; $f_s = 400$ Hz; $f_{B,Mg} = 1200$ Hz $(q = \frac{1}{2})$

Motor A

Motor B

$$b_{Mg,A} = 3.6 \text{ mm}$$

$$\kappa_{Mg,A} = 0.62 \cdot 10^{6} \text{ S/m}$$

$$d_{E,A} = 17.8 \text{ mm}$$

$$b_{Mg,A} / d_{E,A} = 0.2$$

$$b_{Mg,B} / d_{E,B} = 12.6 \text{ mm}$$

Motor A

Motor **B**

Energiewandlung

Andreas Binder 46 / 57

TECHNISCHE UNIVERSITÄT DARMSTADT

Method 3: 2D Time-step calculation

- Reaction field of eddy currents considered

- Full set of Maxwell equations

$$rot\vec{E} = -\partial\vec{B} / \partial t$$
$$\vec{J} = \kappa\vec{E}$$
$$rot\vec{H} = \vec{J} \quad \vec{B} = \mu\vec{H}$$

- For general purpose up to medium frequencies valid
- Very time consuming

Comparison

Overview

- Introduction
- Considered PM synchronous motors
- Electromagnetic performance
- Thermal analysis
- Built prototypes
- Rotor loss calculation methods
- Loss estimation from thermal measurements
- Conclusions

Loss estimation from thermal measurements

Losses at adiabatic heating

Motor G

Useful only as the ratio of the $d \mathcal{A}/dt$ values by the different motor configuration!!

Institut für Elektrische Energiewandlung

Andreas Binder 51 / 57

Loss estimation from thermal measurements

Comparison

Loss estimation from thermal measurements

Comparison

Erwärmung bei Nennleistung : Motor F

Conclusions

- 3 loss calculation methods: FEMAG-DC & analytical formula FEMAG-DC

Time stepping

- 8 motors : 2 Stators ($q = \frac{1}{2}$; $q = \frac{1}{4}$)

4 Rotors (segmented/non-segmented; surface/buried)

- Eddy-current losses in magnets are possible to be calculated with DC method (no eddy current reaction field) due to the rather low conductivity of rare-earth magnets
- Loss estimation from adiabatic thermal heating is possible mainly for surface-mounted permanent magnets
- For buried magnets: influence of bridge losses to be investigated further

Verlustberechnung und experimentelle Validierung bei hochausgenützten Permanentmagnet-Synchronmaschinen mit Zahnspulenwicklungen

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. A. Binder

