Computerunterstützte Berechnung von Schenkelpol-Synchrongeneratoren für Wasserkraftwerke



TECHNISCHE UNIVERSITÄT DARMSTADT



Institut für Elektrische Energiewandlung

#### Dr. Georg Traxler-Samek

ANDRITZ HYDRO AG, Obernauerstraße 4, CH-6010 Kriens Georg.Traxler-Samek@andritz.com

TU Darmstadt Institut für Elektrische Energiewandlung





## Inhalt



#### EINLEITUNG

Computerunterstützung

Berechnung von Hydrogeneratoren

#### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

#### ELEKTRISCHE BERECHNUNGEN

Übersicht

Polschuh-Oberflächenverluste

#### OPTIMIERUNG

#### ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro





## Inhalt



#### **EINLEITUNG**

Computerunterstützung

Berechnung von Hydrogeneratoren

#### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

#### ELEKTRISCHE BERECHNUNGEN

Übersicht

Polschuh-Oberflächenverluste

#### **O**PTIMIERUNG

#### ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro



#### Einleitung - Computerunterstützung Klassifizierung von Berechnungsprogrammen

nichtinteraktives Nachrechenprogramm A)

Basis: analytische Formeln

interaktives Auslegungsprogramm B)

Basis: analytische Formeln

C) interaktives Auslegungsprogramm

Basis: analytische Formeln + numerische Methoden

#### interaktives Simulationsprogramm D)

Basis: numerische Methoden



AUSGABE

DURCHM. 2300 MM

TECHNISCHE UNIVERSITÄT

DARMSTADT



**EINGABEDATEI** 

1.32 4.54 0.324 0.124 1.234

12.5



4



#### Einleitung - Computerunterstützung 50 Jahre Computerunterstützung



#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### historisch:

- Fortran-basierte prozedurale Ansätze
- Nachprogrammierung analytischer Formelsätze
- reine Nachrechenprogramme, basierend auf Eingabe- und Ausgabedatei

#### Heute:

- objektorientierte u. funktionale Ansätze
- Integration numerischer Algorithmen
- Parallelisieren von Berechnungen
- Auslegungsunterstützung und Optimierungen
- interaktive Programme mit grafischer Benutzeroberfläche



#### Einleitung - Berechnung v. Hydrogeneratoren Dimensionierung (Synthese) und Nachrechnung







# Einleitung - Berechnung v. Hydrogeneratoren wichtige Aspekte



- multidisziplinäre Optimierungsaufgaben unter Einbezug von elektrotechnischen, kühlungstechnischen und mechanischen Aspekten
- Vorgaben für die elektromagnetische Auslegung (beispielsweise):
  - Leistungsdaten, Stator-Klemmenspannung
  - Platzverhältnisse (Generatorgrube, Montageverhältnisse)
  - maximal zulässige Erwärmungen (z.B. entsprechend IEC 60034)
  - maximal zulässige mechanische Beanspruchungen, minimale Anzahl von Start-Stopp-Zyklen bei hoher zyklischer Belastung

# Alle Vorgaben sind bereits bei der elektromagnetischen Auslegung zu berücksichtigen!



#### Einleitung - Berechnung v. Hydrogeneratoren Beispiel - Richtangebot



- Dimensionierung basierend auf wenigen Eckdaten (Anzahl Polpaare, Spannung, Scheinleistung, …)
- keine detailoptimierte Lösung notwendig
- wenig Zeitaufwand:
   "in 10 min zur Lösung"
- automatisierte Datenblätter



# Wichtige physikalische Zusammenhänge sind im Computer programmiert!





## Inhalt



#### EINLEITUNG

Computerunterstützung

Berechnung von Hydrogeneratoren

#### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

#### ELEKTRISCHE BERECHNUNGEN

Übersicht

Polschuh-Oberflächenverluste

#### **O**PTIMIERUNG

#### ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro





# Dimensionierung



# AKTIV-KOMPONENTEN DER SYNCHRONMASCHINE



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |



#### **Dimensionierung - Komponenten** vereinfachte Schnittzeichnung der Aktivteile











#### Dimensionierung - Komponenten vereinfachte Schnittzeichnung einer Stator-Nut



TECHNISCHE UNIVERSITÄT DARMSTADT







#### **Dimensionierung - Komponenten** vereinfachte Schnittzeichnung des Rotor-Pols







# Dimensionierung



# DIMENSIONIERUNG DER STATORWICKLUNG





#### Dimensionierung - Statorwicklung Dreiphasen-Zweischichtwicklung



Darstellung einer Urwicklung (kleinste wiederholbare Wicklungseinheit):





#### Dimensionierung - Statorwicklung Anzahl Nuten pro Pol und Phase (Bruchlochwicklung)

TECHNISCHE UNIVERSITÄT DARMSTADT

Darstellung einer Phase einer Urwicklung (kleinste wiederholbare Wicklungseinheit):









#### Dimensionierung - Statorwicklung Bruchlochwicklung - Zonenplan



Zuordnung der einzelnen Phasen zu den Nuten einer Urwicklung:



Bei einer Bruchlochwicklung ist aufgrund der Phasenverschiebung der Zähler der Lochzahl (hier  $q_{\rm Z}=9$  ) massgebend.

Damit wirkt die Bruchlochwicklung wie eine Ganzlochwicklung mit q=9 .









#### Dimensionierung - Statorwicklung Bruchlochwicklung - Zusammenfassung



- Nachteil von Bruchlochwicklungen:
  - Felderregerkurve ist nicht abszissensymmetrisch: Auftreten von geradzahligen Harmonischen möglich:  $\nu=1+mg$  $g=0,\pm1,\pm2,\pm3,\ldots$

u = +1, -2, +4, -5, +7, -8, +10, -11, +13

- Auftreten von Subharmonischen eventuell starke Schwingungen
- Vorteil von Bruchlochwicklungen:
  - für den Zonenfaktor wirkt der mittlere Zähler (hier  $q_{\rm Z}=9$ ), weil die Nuten an den Nachbarpolen phasenverschoben sind
  - Wicklungsfaktoren werden mit  $q_{\rm Z}$  berechnet, und wirken damit wie eine Ganzlochwicklung mit  $q = q_{\rm Z}$





20

#### Dimensionierung - Statorwicklung notwendige Anzahl der Windungen in Serie







#### Dimensionierung - Statorwicklung mögliche Lochzahlen



- Aufbau einer Tabelle für verschiedene:
  - Anzahl paralleler Kreise a
  - Anzahl Windungen pro Spule  $N_{
    m C}$ (Stabwicklung  $N_{
    m C}=1$ )
- Berechnung der Lochzahl unter Berücksichtigung der Symmetriebedingungen:



• Auswahl einer passenden Variante unter Berücksichtigung der Nutteilung  $\tau_N \rightarrow$  Pulsationsverluste, HV-Wicklung, Kosten





#### Dimensionierung - Statorwicklung Beispiel - Wicklung eines 150 MVA / 13.8 kV Generators

- Nenn-Scheinleistung
- Frequenz
- Nennspannung
- Polzahl
- Stator-Innendurchmesser
- Stator-Eisenlänge
- magnetische Flussdichte
- Wicklungstyp
- Anzahl Windungen:

 $egin{aligned} S_{
m N} &= 150\,000\,{
m kVA}\ f &= 50\,{
m Hz}\ U_{
m N} &= 13\,800\,{
m V}\ 2p &= 40\ D &= 8\,900\,{
m mm} \quad 
ightarrow au_P &= rac{D\pi}{2p} &= 0.699\,{
m m}\ L &= 1\,490\,{
m mm}\ B_1 &= 0.93\,{
m T}\ {
m Roebelstabwicklung}\,(N_{
m C} &= 1\,) \end{aligned}$ 

$$N_{
m s} = rac{U_{
m N}}{\sqrt{3/2} \cdot 2\pi f \cdot \xi_1 \cdot (2/\pi) \cdot L \cdot au_P \cdot B_1} pprox 63$$



23

#### Dimensionierung - Statorwicklung Beispiel - mögliche Wicklungsvarianten (Stabwicklung)



15.750

a M

14.8

# Dimensionierung basiert auf wichtigen physikalischen Zusammenhängen!

1'890

10

15.750

63

4



24

für eine

Wicklung

Hochspannungs-

#### **Dimensionierung - Statorwicklung Computer-Implementierung der Statorwicklung**

0 A A @

ξ

-0.00577

0.02158

-0.01382

0.93019

-0.01277

0.03262

-0.00565 0.00392

-0.00467

0.00894

-0.01498

0.01315

-0.02173

0.01016

-0.01865

0.00148

-0.07961

0.01076

0.02446

-0.01750

0.04190

-0.00434

0.00367

-0.03189

3.9000

39

\*

MMF table

+2

-4

+5

+8

-10 147.7

-13

-16 -87.7

+17

-19 +20 64.6

-22 -143.1

+23-25 -170.8

+26-60.0

-28

+29-32.3

-31 133.8

+32 -4.6

-34 +35 -156.9

Stator winding data

fractional slot number

 $\varphi$  (°)

-129.2

-101.5

-156.9

106.2

175.4

133.8

161.5

-60.0

9.2

36.9

92.3

161.5

106.2

-115.4

winding pitch coefficient 0.8547

Daten der

**Urwicklung** 

Arbeitswelle

Wicklung

 $\xi_{
u=p_0}$ 

der Bruchloch-





duct (mm)

stacking factor

package (mm)

flux density (T

yoke h. (mm)

6.0

0.94

50.6

1.297

246.0

#### Harmonische der Felderregerkurve (FEK) und Wicklungsfaktoren





## Inhalt



#### EINLEITUNG

Computerunterstützung

Berechnung von Hydrogeneratoren

#### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

#### **ELEKTRISCHE BERECHNUNGEN**

Übersicht

Polschuh-Oberflächenverluste

#### **O**PTIMIERUNG

#### ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro









# ÜBERSICHT ÜBER ELEKTRISCHE BERECHNUNGEN







#### Elektrische Berechnungen - Übersicht Polfeld und Polfeld-Koeffizienten







#### Elektrische Berechnungen - Übersicht abgeflachter Pol ↔ Sinusfeldpol



TECHNISCHE UNIVERSITÄT DARMSTADT



 $B_{
m max}$ 

Radialkomponente  $B_r(x)$ 

Luftspalt-Flussdichte

niedriger Erregerbedarf, hoher Oberwellengehalt (Eisenverluste)



hoher Erregerbedarf,

geringer Oberwellengehalt





## Elektrische Berechnungen - Übersicht Bestimmung des Erregerbedarfs



- numerische Berechnung: basierend auf einem nichtlinearen numerischen Modell
  - Finite-Elemente (FE)
  - Finite-Differenzen (FD)
- analytische Berechnung:
   basierend auf einer vereinfachten Berechnung

des magnetischen Kreises

- schnelle Berechnung
- ausreichend genau



Quelle: ANDRITZ Hydro werkseigener Finite-Differenzen Code



30

## Elektrische Berechnungen - Übersicht analytische Bestimmung des Erregerbedarfs



- analytische Bestimmung des Erregerbedarfs:
  - Verwendung der Polfeld-Koeffizienten aus einer numerischen Feldberechnung
  - analytische Ermittlung des Erregerbedarfs über eine vereinfachte Berechnung des magnetischen Kreises





## Elektrische Berechnungen - Übersicht Verlustberechnung und Wirkungsgrad



- mechanische Verluste (ca. 20...40% der Gesamtverluste):
  - Ventilationsverluste
  - Lagerreibungsverluste
- Ummagnetisierungsverluste (ca. 20...40% der Gesamtverluste):
  - Hysterese-, klassische und anomale Wirbelstromverluste im Stator-Blechpaket
  - Wirbelstromverluste an der Polschuhoberfläche aufgrund der Stator-Nutung und der Feldoberwellen der Statorwicklung
  - Wirbelstromverluste im Presssystem des Stator-Blechpakets (stirnseitig: Pressfinger, Pressplatten)
  - Wirbelstromverluste in Gehäuseteilen und Verschalungen





## Elektrische Berechnungen - Übersicht Verlustberechnung und Wirkungsgrad



- Verluste in der Statorwicklung (ca. 15...30% der Gesamtverluste):
  - Stromwärmeverluste
  - Wirbelstromverluste aufgrund des magnetischen Streufelds in der Statornut und im Wickelkopf (Tangential- und Radialanteil)
  - Schlingstromverluste aufgrund von Kreisströmen zwischen den parallelen Teilleitern eines Wicklungsstabes aufgrund des Stirnstreufelds
- Verluste in der Dämpferwicklung aufgrund der Stator-Nutung und der Feldoberwellen der Statorwicklung (ca. 0...3% der Gesamtverluste)
- Stromwärmeverluste in der Polwicklung (ca. 10...25% der Gesamtverluste)



## Elektrische Berechnungen - Übersicht Verlustberechnung und Wirkungsgrad



| • | hoher Berechnungsaufwand bei der                     |
|---|------------------------------------------------------|
|   | Bestimmung der Verluste                              |
| • | hohe Verlustbewertungen von Seiten der Auftraggeber: |

Beispiel (100 MVA-Generator):Verlustbewertung12 000 EUR/kWPolschuh-Verluste14 kW (1.2 %) ◀bewertet168 000 EUR

Bereits kleine Verlustanteile sind hoch bewertet !

| Operation: U = 1095<br>cos φ =                                  | 50.0 V, I = 5272.6 A<br>-0.8, sin φ = 0.6                   |
|-----------------------------------------------------------------|-------------------------------------------------------------|
| Mechanical Losses                                               |                                                             |
| ventilation<br>bearing                                          | 301.9 kW<br><u>59.4 kW</u><br>361.2 kW                      |
| Open circuit core loss                                          | es                                                          |
| iron (yoke)<br>iron (teeth)<br>pole face<br>other               | 93.9 kW<br>51.4 kW<br>0.4 kW<br><u>14.5 kW</u><br>160.2 kW  |
| Short circuit test loss                                         | es                                                          |
| I <sup>2</sup> R stator<br>eddy current                         | 213.5 kW<br>20.7 kW                                         |
| pole face<br>stator iron (yoke)<br>stator iron (teeth)<br>other | 13.7 kW<br>12.6 kW<br>5.1 kW<br><u>125.5 kW</u><br>391.2 kW |
| <b>Excitation losses</b>                                        |                                                             |
| I <sup>2</sup> R rotor                                          | 248.0 kW                                                    |
| Loss calculation sum                                            | mary                                                        |
| total losses<br>efficiency                                      | 1185.4 kW<br>98.54 %                                        |



#### Elektrische Berechnungen - Übersicht Ersatzschaltbild für transiente Vorgänge



- **stationärer** Betrieb:
  - Erregerwicklung induziert Spannung in der Statorwicklung
  - keine Gegeninduktion der Statorwicklung auf Rotorkreise
- transienter Vorgang Koppelung von drei elektrischen Kreisen:
  - Statorwicklung
  - Erregerwicklung (Feldwicklung)
  - Dämpferwicklung
- Bestimmung des Ersatzschaltbilds







#### Elektrische Berechnungen - Übersicht Beispiel: dreiphasiger Stosskurzschluss aus ESB





36
# Elektrische Berechnungen - Übersicht magnetische Kräfte



- Radialkraftwellen aufgrund von Nutungseffekten (offene Statornut) und der Bruchlochwicklung
- Anregung nahe der Eigenfrequenzen des Stators kann zu unzulässigen Schwingungsamplituden führen







# **Elektrische Berechnungen**



# RADIALKRAFTWELLEN



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |



# Elektrische Berechnungen - Radialkraftwellen **Schwingungsproblem eines 250 MVA - Generators**



bestehende Maschine mit Schwingungsproblem

 $S_{\rm N}=250\,{
m MVA}$  $D = 4.4 \,\mathrm{m}$  $L = 2.9 \,{
m m}$ 2p = 14

- begrenzte Anzahl Maschinendaten vorhanden (Längsschnitt, Querschnitt)
- Computerprogramm ergänzt fehlende Daten
- Identifikation des Problems in wenigen Minuten: 8-Knotenschwingung des Stators Anregung durch Bruchlochwicklung mit 100 Hz Eigenfrequenz des Stators nahe 100 Hz



Wichtige physikalische Zusammenhänge sind im Computer programmiert!





# Elektrische Berechnungen - Radialkraftwellen Bruchlochwicklung des Generators



Darstellung einer halben Urwicklung der Bruchlochwicklung ( $p_0 = 7$ ):





# Elektrische Berechnungen - Radialkraftwellen Entstehung der Radialkraftwellen



Radikalkomponente der Magnetfeldwelle der Ankerrückwirkung

mechanische Spannungswelle

Zusammenwirken zweier Wellen der Ordnungszahlen  $\nu_1$  und  $\nu_2$  ergibt ein Wellenpaar:

$$\sin\left(\frac{\nu_{1}x\pi}{\tau_{P}p_{0}}-\omega t\right)\cdot\sin\left(\frac{\nu_{2}x\pi}{\tau_{P}p_{0}}-\omega t\right) = \frac{1}{2}\cos\left(\frac{x\pi}{\tau_{P}p_{0}}\cdot(\nu_{1}\pm\nu_{2})-2\omega t\right)$$
Harmonische des Polfelds,  
nichtkonstanter Luftspalt und  
Einfluss der Dämpferwicklung  
werden hier vernachlässigt !  

$$\left(\ldots+B_{\nu_{1}}+B_{\nu_{2}}+\ldots\right)^{2}=\ldots B_{\nu_{1}}^{2}+2B_{\nu_{1}}B_{\nu_{2}}+B_{\nu_{2}}^{2}+\ldots$$

$$\hat{\sigma}_{\nu_{1},\nu_{2}}=\frac{1}{2\mu_{0}}\cdot\hat{B}_{\nu_{1}}\hat{B}_{\nu_{2}}$$



# Elektrische Berechnungen - Radialkraftwellen Berechnungsergebnisse



#### berechnete Amplituden der Magnetfeldwellen der Ankerrückwirkung:

| Ordnungs-<br>zahl v | B <sub>v</sub> (T) |  |  |
|---------------------|--------------------|--|--|
| 1                   | 0.035              |  |  |
| -5                  | 0.024              |  |  |
| 7                   | 0.910              |  |  |
| -11                 | 0.027              |  |  |
| 13                  | 0.008              |  |  |

Eigenfrequenz des Stators liegt für die 8-Knoten Form nahe bei 100 Hz !

- zum Erreichen einer nennenswerten Amplitude muss die Arbeitswelle  $\nu=7$  involviert sein
- das Zusammenwirken von  $\nu = 7$  und  $\nu = -11$  führt zu einer 8-Knoten Spannungswelle

$$N = \left|rac{2 \cdot 7 \cdot (7 + (-11))}{7}
ight| = 8$$

$$\hat{\sigma}_{7,-11} = rac{0.910 \cdot 0.027}{2 \mu_0} = 9776 \, rac{\mathrm{N}}{\mathrm{m}^2}$$

 die Zugkraft eines Wellenbergs pro Maschinenlänge beträgt

$$F_{7,-11}' = \hat{\sigma}_{7,-11} \cdot rac{2}{\pi} \cdot au = 9776 \; rac{\mathrm{N}}{\mathrm{m}^2} \cdot rac{2}{\pi} \cdot 1.73 \, \mathrm{m} = 10754 \, \mathrm{N/m}$$







# POLSCHUH- OBERFLÄCHENVERLUSTE ÜBERSICHT



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |



# Elektrische Berechnungen - Polschuhverluste Übersicht

- Magnetfeldwellen im Luftspalt, die sich relativ zum Rotor bewegen, induzieren Spannungen in Polschuh und Dämpferwicklung und führen zu axialem Stromfluss:
  - Pulsations-Feldwellen aufgrund der Stator-Nutung (Leerlauf)
  - Feldwellen aufgrund der Harmonischen der Felderreger-Kurve (Last)







# Elektrische Berechnungen - Polschuhverluste Feldpulsationen der Stator-Nutung



- Feldpulsationen aufgrund der Stator-Nutung (offene Nuten der Hochspannungswicklung)
- Wellenlänge:  $\lambda = au_{
  m N}$ Frequenz:  $f_Q = Q \cdot n = 2pmq \cdot \frac{f}{r} = 2mqf$

- $m \dots$  Anzahl Phasen
- $p \dots$  Anzahl Polpaare der Maschine
- Q ... Anzahl Statornuten am Umfang
- $q \dots$  Anzahl Nuten pro Pol und Phase
- $f \dots$  Netzfrequenz (Hz)
- $f_{O}$  ... Pulsationsfrequenz (Hz)





# Elektrische Berechnungen - Polschuhverluste Harmonische der Felderregerkurve



- Harmonische der Felderregerkurve der Ankerrückwirkung
- massgebender Anteil durch 5. und 7. Harmonische
- Felderregerkurve (in rotorfestem Koordinatensystem):



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |

# Elektrische Berechnungen - Polschuhverluste Massivpol ↔ lamellierter Pol



lamellierter Pol: **Massivpol:** Massivpol Wirbelströme Randeffekte Polblech dominant **Wirbelströme** Randeffekte 7 97 97 97 97 9 vernachlässigt









# POLSCHUH- OBERFLÄCHENVERLUSTE TEIL I: 2D-ALGORITHMUS







# Elektrische Berechnungen - Polschuhverluste Rechenmodell für Massivpole - ebenes Feld



- Ansatz: zweidimensionales (ebenes) Feld in (x, y) -Ebene
- Berechnung des magnetischen Vektorpotentials:

$$egin{aligned} \underline{\mathbf{A}}(x,y) &= \underline{A}(x,y) \cdot \mathbf{e}_z \ & \ \underline{\mathbf{B}} &= 
abla imes \underline{\mathbf{A}} = \begin{pmatrix} \partial_y \underline{A} \ -\partial_x \underline{A} \ & 0 \end{pmatrix} \end{aligned}$$

harmonische Zeitabhängigkeit aller Feldgrössen, somit Rechnung mit komplexen Grössen:

$$f(x,y,t) = \mathrm{Re}\Big\{ \underline{f}(x,y) \cdot \exp(j\omega t) \Big\}$$

 $A \dots$  magnetisches Vektorpotential (Vs/m)  $B \dots$  magnetische Flussdichte (T)

49



# **Elektrische Berechnungen - Polschuhverluste Rechenmodell für Massivpole - Übersicht**



- Berechnung des magnetischen Vektorpotentials in zwei Bereichen: Luftspalt und Poloberfläche
- Feldanregung über Strombelags-Welle:  $K(x) = K \cdot \exp(-jkx)$





# Elektrische Berechnungen - Polschuhverluste Rechenmodell für Massivpole - Lösungsansätze



- alle Grössen sind proportional  $\exp(-jkx)$
- Lösungsansatz in der Poloberfläche (erfüllt Helmholtz-Gleichung):

 $\underline{A}_2(x,y) = \underline{D}_2 e^{\underline{\lambda} y} \cdot \exp(-jkx)$ 

• Lösung in der Poloberfläche:

$$egin{aligned} & \underline{\lambda} = \sqrt{k^2 + rac{2j}{d_E^2}} & d_E = \sqrt{rac{2}{\omega\mu\kappa}} \ & \underline{D}_2 = rac{\mu_0 K}{k} \cdot rac{e^{\underline{\lambda}\,\delta}}{\sinh(k\delta) + rac{\underline{\lambda}}{\mu_r k} \cdot \cosh(k\delta)} \end{aligned}$$

**Literatur:** *M.G.* Barello. Courants de Foucault engendrés dans les pièces polaires massives des alternateurs par les champs tournants parasites de la rédaction d'induit. Revue Générale de l'électricité, pages 557-576, 1955.



#### der magnetischen Flussdichte 0.80 0.60 $\mu_0 K$

$$B_t = \left| rac{\mu_0 H}{k} \cdot rac{\mu_1}{\sinh(k\delta) + rac{\lambda}{\mu_r k} \cosh(k\delta)} 
ight|$$
 $\mu_{r2} = rac{B_t}{\mu_0 H(B_t)}$ 

0.40 0.20

# kann nicht berücksichtigt werden konstante Ersatzpermeabilität im gesamten Plattenbereich

ortsabhängige Permeabilität

Bestimmung dieser Permeabilität über die Tangentialkomponente

# **Elektrische Berechnungen - Polschuhverluste** Berücksichtigung der Nichtlinearität







# Elektrische Berechnungen - Polschuhverluste Berechnung der Oberflächen-Verlustleistungsdichte

 Verlustleistungsdichte im Plattenmaterial:

$$p_{
m V} = rac{\omega^2 \kappa}{2} \cdot \underline{A}_2 \underline{A}_2^st$$

• Oberflächen-Verlustleistungsdichte:

$$p_{\mathrm{A}} = \int_{-\infty}^{-\delta} rac{\omega^2 \kappa}{2} \cdot \underline{A}_2 \underline{A}_2^* \, dy = rac{\omega^2 \kappa}{2} \, rac{\underline{D}_2 \underline{D}_2^*}{\underline{\lambda} + \underline{\lambda}^*} \cdot e^{-(\underline{\lambda} + \underline{\lambda}^*) \cdot \delta}$$









#### TECHNISCHE UNIVERSITÄT DARMSTADT

# Elektrische Berechnungen - Polschuhverluste Berechnung der Gesamtverluste

# Voraussetzungen:

- Verluste werden an mehreren Stellen des Polschuhs separat berechnet
- Randeffekte an der Kante des Polschuhs und den axialen Enden werden vernachlässigt
- mittlere Verlustleistungsdichte:

$$\overline{p}_{\mathrm{A}} = rac{p_{\mathrm{A}0} + 4p_{\mathrm{A}1} + p_{\mathrm{A}2}}{6}$$

Gesamtverluste:

 $P = \overline{p}_{
m A} \cdot b_{
m s} L_{
m s} \cdot 2p$ 



 $b_{
m s}/2$ 



 $\delta_2$ 







# POLSCHUH- OBERFLÄCHENVERLUSTE TEIL II: 3D-ALGORITHMUS



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |



# Elektrische Berechnungen - Polschuhverluste Rechenmodell für lamellierte Pole - Annahmen



- Ansatz: dreidimensionales Feld im (x, y, z)-Raum
- Berechnung der elektrischen Stromdichte  $\underline{J}(x, y, z)$
- Annahme: magnetische Flussdichte in Axial-Richtung verschwindet

 $\underline{B}_z = 0$  (ähnlich einem ebenen Feld)



 harmonische Zeitabhängigkeit aller Feldgrössen, somit Rechnung mit komplexen Grössen:

$$f(x,y,z,t) = \mathrm{Re}\Big\{ \underline{f}(x,y,z) \cdot \exp(j\omega t) \Big\}$$

- $\underline{\mathbf{B}}$  ... Vektor der magnetischen Flussdichte (T)
- $\underline{\mathbf{J}}$  ... Vektor der elektrischen Stromdichte (A/m<sup>2</sup>)
- $\omega \ldots {
  m Kreisfrequenz} \ (1/{
  m s})$
- $\kappa \dots$ elektrische Leitfähigkeit (S/m)





## Elektrische Berechnungen - Polschuhverluste Rechenmodell für lamellierte Pole: 3D-Teilmodell



**3D-Modell**: Anregung nur über eine vorgegebene **x-Komponente der** magnetischen Feldstärke  $\underline{\mathbf{H}}_0 = \underline{H}_0 \cdot \mathbf{e}_x$  möglich, die über die gesamte Breite h konstant ist



Literatur: z.B. G. Traxler-Samek. Zusatzverluste im Stirnraum von Hydrogeneratoren mit Roebelstabwicklung. Dissertation, Technische Universität Wien, Österreich, 2003.



# Elektrische Berechnungen - Polschuhverluste Rechenmodell für lamellierte Pole - Gesamtmodell



### vereinfachte Lösung: iterative Koppelung 2D-3D Modell



# Elektrische Berechnungen - Polschuhverluste Rechenmodell für lamellierte Pole: 2D-Teilmodell



- 2D-Modell: Luftspaltmodell, Anregung über Strombelagswelle  $\mathbf{K}(x,t)$
- 3D-Modell wird über eine **mittlere** Ersatzpermeabilität  $\underline{\mu}' = \underline{B}_0 / \underline{H}_0$  simuliert, diese wird aus dem 3D-Modell ermittelt
- Da  $\underline{B}_0$  im Gegensatz zu  $\underline{H}_0$  im 3D-Modell von z abhängt, wird der Mittelwert über die Breite h gebildet











# POLSCHUH- OBERFLÄCHENVERLUSTE TEIL III: VERGLEICHSBERECHNUNGEN





# Elektrische Berechnungen - Polschuhverluste lamellierter Pol mit massiven Endplatten







# Elektrische Berechnungen - Polschuhverluste Verluste in Abhängigkeit der Blechdicke



Blechdicke 0.5 - 200 mm, Frequenz 1500 Hz, Wellenlänge 80 mm, Luftspalt 20 mm, Flussdichtenamplitude B = 0.05 T (Normalkomponente), 20000 Oberflächen-Verlustleistungsdichte massiver 15000 Bereich: 100%  $(W/m^2)$ 10000 5000 lamellierter 3D-Modell 2D-Modell Bereich: ca. 5.5% 0 100 150 200 50  $\rho = 0.25 \,\Omega mm^2/m$ Quelle: ANDRITZ Hydro Polblech-Dicke (mm)



# Elektrische Berechnungen - Polschuhverluste Überprüfung des Berechnungsverfahrens



- Vergleich mit numerischer Feldberechnung:
  - einfach möglich für Massivpole (2D)
  - sehr aufwendig für lamellierte Pole (3D)
- Verlustmessung:
  - über Poynting-Vektor-Sensor
  - über Erwärmungen in einer Labormaschine



dreidimensionale thermische





# Inhalt



### EINLEITUNG

Computerunterstützung

Berechnung von Hydrogeneratoren

### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

### ELEKTRISCHE BERECHNUNGEN

Übersicht

Polschuh-Oberflächenverluste

# **OPTIMIERUNG**

# ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro





# Optimierung



# **GENETISCHE ALGORITHMEN**







# Optimierung - Genetische Algorithmen Einführung





66

# Optimierung



# OPTIMIERUNG VON SYNCHRONMASCHINEN



02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |



# Optimierung von Synchronmaschinen Steuerparameter für die Optimierung



- Steuerparameter: relative Veränderung der Maschinenparameter
- Beispiel Polschuhbreite: diese ist relativ zur Polteilung definiert d.h. bei Veränderung des Stator-Durchmessers, bleibt die Polschuhbreite relativ gesehen gleich





# Optimierung von Synchronmaschinen Parameter der Optimierung



- 16 Maschinenparameter zur Optimierung:
  - Hauptabmessungen: Anlaufzeitkonstante, Ausnützungsziffer
  - Statorwicklung: Stator-Spannung, Nutteilung, Luftspalt-Flussdichte
  - Statorabmessungen: Joch-Flussdichte, Stromdichte, Verhältnis Nuthöhe zu Nutbreite, Teilleiterhöhe
  - Rotorabmessungen: Luftspalt, Polschuhform (1 Parameter), Polabmessungen (4 Parameter), Polwicklungsbreite
- Vorgangsweise:
  - einstufiges Verfahren: alle 16 Parameter werden optimiert
  - zweistufiges Verfahren:
    - Stufe 1: 9 Parameter (Hauptabmessungen, Stator)
    - Stufe 2: 7 Parameter (Rotor)





# **Optimierung von Synchronmaschinen** Bewertungsfunktion (Fitnessfunktion) für Optimierung







# **Optimierung von Synchronmaschinen** Beispiel 20 MVA, 6-polig, 6000 V



90 Nuten

ausgeführte Variante

optimierte Variante





# **Optimierung von Synchronmaschinen** Beispiel 20 MVA, 6-polig, 6000 V

4 kEUR / kW



Population: N = 40Mutations- und Rekombinationswahrscheinlichkeit:  $p_{
m M} = p_{
m R} = 0.1$ 

| Parameter                                     | optimiert | ausgeführt | Einheit |
|-----------------------------------------------|-----------|------------|---------|
| Stator-Innendurchmesser                       | 1470.0    | 1400.0     | mm      |
| Stator-Eisenlänge                             | 1840.0    | 1600.0     | mm      |
| Stator-Nutenzahl                              | 90        | 90         |         |
| Luftspalt                                     | 16.6      | 12.0       | mm      |
| Synchron-Reaktanz                             | 1.090     | 1.100      | p.u.    |
| Gesamtverluste bei Nennlast                   | 248.0     | 258.0      | kW      |
| Herstellungskosten (Aktivteile, ohne Montage) | 1272.0    | 1198.5     | kEUR    |
| Bewertete Herstellungskosten                  | 1272.0    | 1238.5     | kEUR    |
| Abweichung von der ausgeführten Variante      | 2.7       | 0.0        | %       |

# Optimierung führt nahe an das Ziel, Feinjustierung eines erfahrenen Ingenieurs ist notwendig!




### Inhalt



#### EINLEITUNG

Computerunterstützung

Berechnung von Hydrogeneratoren

#### DIMENSIONIERUNG

Komponenten

Dimensionierung der Statorwicklung

#### ELEKTRISCHE BERECHNUNGEN

Übersicht

Polschuh-Oberflächenverluste

#### OPTIMIERUNG

#### ZUSAMMENFASSUNG



#### Quelle: ANDRITZ Hydro





## Zusammenfassung



- Einblick in die Computerunterstützte Dimensionierung und elektrische Berechnung von Schenkelpol-Synchrongeneratoren:
  - Dimensionierung: Statorwicklung
  - elektrische Berechnung: Polschuhoberflächenverluste und anregende Radialkraftwellen
- Computerunterstützung:
  - erlaubt Implementierung von aufwendigen Berechnungsverfahren
  - fördert die Arbeitseffizienz
  - vereinfacht den Prozess der Optimierung
- Expertenprogramme: trotz einfacher Bedienung braucht man weiterhin den erfahrenen Berechnungsingenieur
  - Erfassung der Zusammenhänge zwischen Parametern
  - Prüfung der Plausibilität der Ergebnisse





# Vielen Dank für Ihre Aufmerksamkeit!



UNIVERSITÄT

02.06.2015 | Antrittsvorlesung | TU Darmstadt , Institut für Elektrische Energiewandlung | Dr. Georg Traxler-Samek |

75