Elektromobilität – nur ein Schlagwort?

Veranstaltungsreihe "Was steckt dahinter?", 18. Mai 2021

Technische Universität Darmstadt Institut für Elektrische Energiewandlung

Andreas Binder abinder@ew.tu-darmstadt.de

Björn Deusinger bdeusinger@ew.tu-darmstadt.de

Quelle: TU Darmstadt, Hybrid-Doppel-E-Antrieb, Projekt DE-REX

Institut für Elektrische Energiewandlung

Forschungsgebiete

- Hochdrehzahlantriebe
- Magnetlagerung
- Hochleistungsmotoren
- Linear- & Direktantriebe
- Hybrid- & Elektrofahrzeugantriebe
- Lagerströme in umrichtergespeisten
 Antrieben
- Generatoren für Wind- und Wasserkraft
- Bahntechnik

Übersicht

- Was ist Elektromobilität?
- Konzepte f
 ür E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven f
 ür die Elektromobilit
 ät

Was ist Elektromobilität?

- Elektromobilität bezeichnet die Nutzung von
 - a) Elektrofahrzeugen oder
 - b) Hybridelektrokraftfahrzeugen mit vollelektrischer Fahrmöglichkeit (Vollhybrid) für die Erfüllung der unterschiedlichen individuellen Mobilitätsbedürfnisse.
- Das Mobilitätsverhalten der Menschen im Umgang mit solchen Fahrzeugen nennt man Elektromobilität.
- Der Begriff Elektromobilität wird auch für Programme zur Förderung der Nutzung von Elektrokraftfahrzeugen (Elektroauto, Elektromotorroller/-motorrad, Elektrorad) verwendet.
- Dazu gehören auch:
 - Batterieentwicklung,
 - Technik der Lade-Systeme,
 - Lade-Infrastruktur.

wiki/Elektromobilitat

Quelle: http://de.wikipedia.org/wiki/Elektromobilität

Elektromobilität Geschäfte mit alten Gewohnheiten?

- Die Diskussion um die **Elektromobilität** verdrängt die viel wichtigere Aspekte einer integrierten umweltfreundlichen Verkehrspolitik.
- 1) Der reine Personentransport muss durch eine auszubauenden ÖPNV effektiver ökologisch umgebaut werden.
- 2) E-Mobilität wird für den kleinräumigen Lieferverkehr benötigt.
- 3) Städteverbindungen für Personenverkehr grundsätzlich wieder verstärkt per Bahn zu realisieren!
- ⇒ Ausbau von ÖPNV & Bahn!
- ⇒ Verhaltensänderung des Nutzerverhaltens!
- Aktuelle Priorisierung der E-Mobility zeigt,
 dass an "alten" Gewohnheiten des Individualverkehrs festgehalten wird.
- <u>Siehe dazu:</u> Studien des *VCÖ Verkehrsclub Österreich* Mobilität mit Zukunft
- <u>Ziel</u>: Ökologisch verträgliches, ökonomisch effizientes, sozial gerechtes Verkehrssystems.

Quelle: vdi nachrichten 19.2.2021 Leserbrief Frank Fürstenau

Elektrisch angetriebene Straßenfahrzeuge

- Ein Elektrofahrzeug ist ein Verkehrsmittel, das nur mit elektrischer Energie angetrieben wird.
- Die elektrische Energie wird
 - a) in Akkumulatoren im Fahrzeug gespeichert oder
 - b) von außen über Oberleitungen o. ä. (Trolley-Bus, ...) zugeführt.

TESLA Roadster

- Weil die verfügbaren Akkumulatoren trotz großer Fortschritte eine
 - deutlich geringere Energiedichte als Kraftstoff haben,
 - eine begrenzte Lade-Entlade-Zyklenzahl haben,
 - relativ teure Komponenten sind,

wird auch der Weg der Hybridantriebstechnik verfolgt.

Toyota Prius Hybrid

Quellen: Tesla, Toyota

Was ist Elektromobilität?

Elektrofahrzeug

- Elektrofahrzeuge Varianten:
- a) Batteriebetrieben, battery electric vehicle (BEV):

Akkumulator als Speicher

b) Brennstoffzellen-betrieben, fuel cell electric vehicle (FCEV):

Wasserstofftank,

Umwandlung von Wasserstoff u. Sauerstoff in Wasser & el. Energie in der Brennstoffzelle

c) Reichweitenverlängerer, Range Extender (REX):

Zusätzlicher Antrieb im E-Auto zur Reichweitenerhöhung (meist kleiner Verbrennungsmotor)

Hybride Antriebstechnik für Kraftfahrzeuge

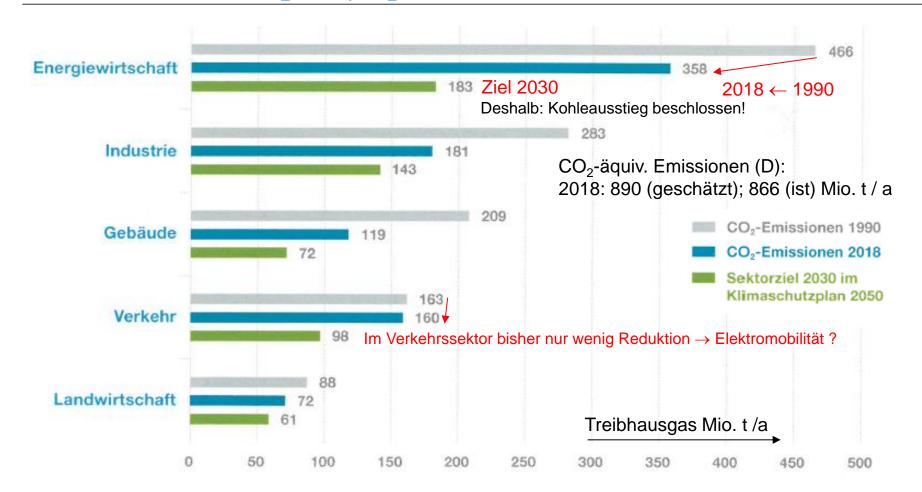
- In einem Hybridfahrzeug sind mindestens
 - 1) zwei Energiewandler (Verbrennungskraftmotor & E-Motor) und
 - 2) **zwei Energiespeichersysteme** ("Kraftstoff" und "Akkumulator") vorhanden, um das Fahrzeug anzutreiben.
- Energiewandler: a) Elektromotoren: Gleichstrom- oder Drehstrommotoren
 - b) Verbrennungskraftmotoren: meist Otto- und Dieselmotoren
- Energiespeicher: a) Batterie
 - b) Kraftstoff im Tank

Quelle: Lexus

Lexus CT200 Vollhybrid

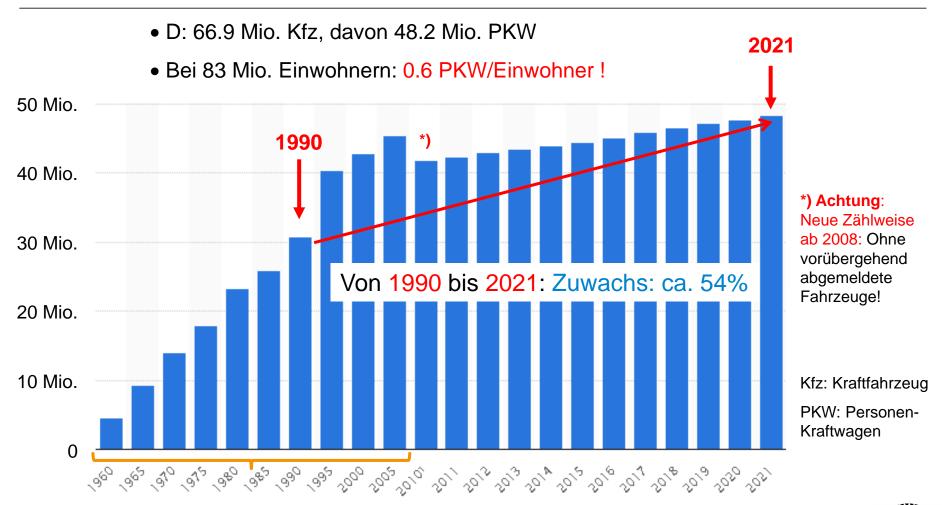
Was ist Elektromobilität?

Hybridelektrokraftfahrzeuge



- Hybridantriebsvarianten:
- a) Micro-Hybrid: 3 ... 4 kW/t (E-Motor-Leistung/Fahrzeugmasse):
 VKM-Start-Stopp-Automatik, Bremsenergierückgewinnung lädt Starterbatterie
- b) Mild-Hybrid: 6 ...14 kW/t: Zusätzlich zum Micro-Hybrid: E-Motor-Unterstützung der VKM beim Anfahren/Beschleunigen ("Boost"), kurze Distanz "elektrisches Fahren",
- c) Voll-Hybrid: > 20 kW/t: Zusätzlich zum Mild-Hybrid: "Innerstädtische Distanzen" elektrisches Fahren.
- PHEV (Plug-in-Hybrid): Kfz mit Hybridantrieb, dessen Akkumulator sowohl über den
 - Verbrennungsmotor & E-Generator als auch
 - mit Ladestecker am Stromnetz geladen wird.

Gesamte Treibhausgas-Emissionen nach Energieträgern (Deutschland) (CO₂, CH₄, N₂O) – Klimaschutzziel



Quelle: Bundesumweltministerium: Klimaschutzzahlen 2017

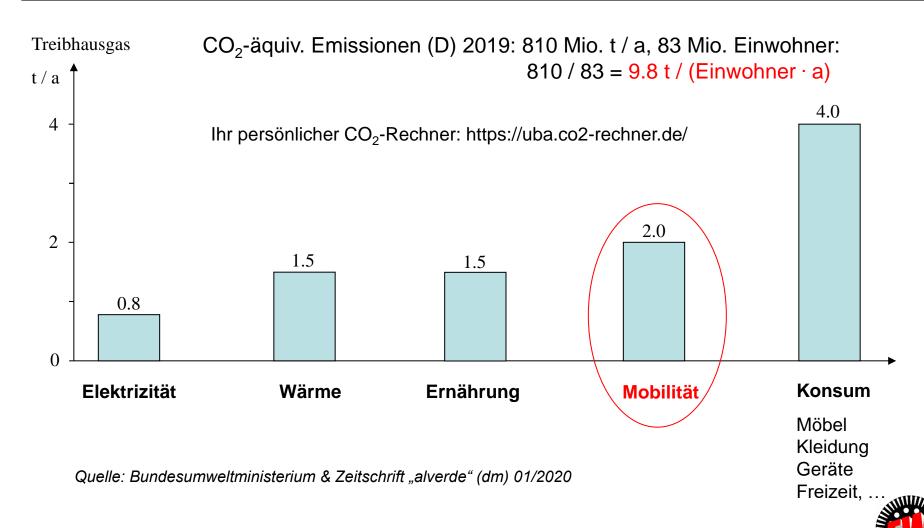
TECHNISCHE UNIVERSITÄT DARMSTADT

Anzahl zugelassener PKW in Deutschland (D)

Maßstab gestaucht!

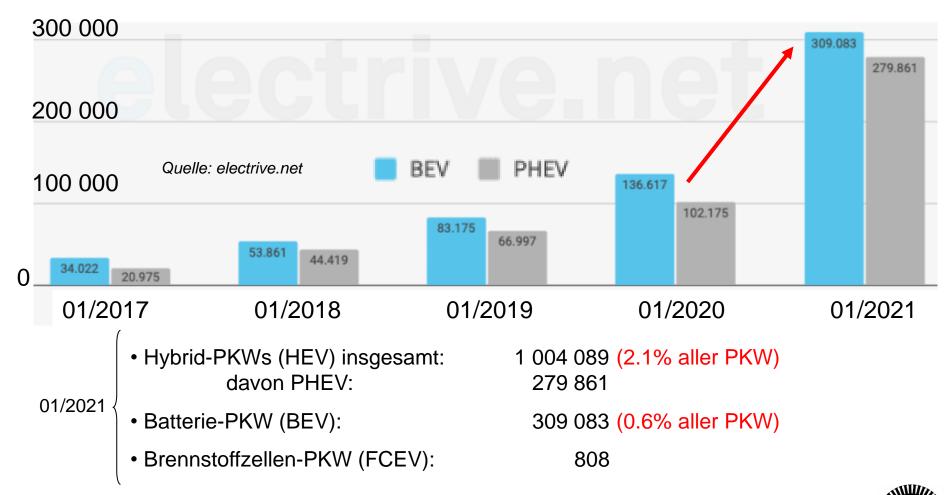
Quelle: Statista, 2021

Weltweiter Erdölverbrauch: Stand & Prognose bis 2045 (in Mio. Barrel pro Tag) 1 Barrel = 150 Liter


Quelle: OPEC, 2020			_					Growth
Quelle. Of LO, 2020	2019	2020	2025	2030	2035	2040	2045	2019-2045
Road	44.4	40.1	46.3	46.9	47.1	47.1	47.0	2.6
Aviation	6.7	3.5	7.1	7.7	8.4	8.9	9.4	2.8
Rail/waterways	1.9	1.8	1.9	2.0	2.1	2.1	2.0	0.2
Marine bunkers	4.2	4.0	4.4	4.6	4.7	4.7	4.6	0.5
Transportation	57.2	49.4	59.7	61.2	62.2	62.8	63.2	6.0
Petrochemicals	13.7	12.9	14.7	15.9	16.7	17.0	17.3	3.7
Otherindustry	12.8	12.7	13.0	13.5	13.5	13.3	13.1	0.3
Industry	26.5	25.6	27.8	29.4	30.2	30.3	30.4	4.0
Resid./Comm./Agric.	11.1	10.8	11.4	12.0	12.2	12.1	11.6	0.5
Electricity generation	4.9	4.9	4.8	4.6	4.3	4.1	3.9	-1.1
Other uses	16.0	15.7	16.1	16.6	16.5	16.1	15.5	-0.5
World	99.7	90.7	103.7	107.2	108.9	109.3	109.1	9.4

Welt & auch D: 2020: Erdöl: Energieträger No. 1 mit ca. 30%! 40.1/90.7 = 44% ⇒ Erdölverbrauch-Hauptanteil: Straßenverkehr!

Die deutsche Energiewende:



	Stand 2019/20	Ziel 2020	Ziel 2050
Treibhausgasemissionen (bezüglich 1990)	-35.1 % (2019)	-40 %	-80 %
Primärenergieverbrauch (bezüglich 2008)	-10.5 % (2019)	-20 %	-50 %
Wärmebedarf in Gebäuden (bezüglich 2008)	-17 % (2018)	-20 %	-60 %
Netto-Stromverbrauch (bezüglich 2008)	-4.8 % (2019)	-10 %	-25 %
Anteil Stromerzeugung aus regenerativen Quellen am Bruttostromverbrauch	45.4 % (2020)	35 %	80 %
Anteil regenerative Energie am Brutto- Endenergieverbrauch	19.6 % (2020)	18 %	60 %
Batterie-Elektroautos (BEV)	309 083 (1.1.2021)	1 Mio	5 Mio (2030)
Offshore-Windenergie	7.8 GW (2020)	10 GW	25 GW (2030)

Elektromobilität in Deutschland

TECHNISCHE UNIVERSITÄT DARMSTADT

Bestand zugelassene PHEV & BEV

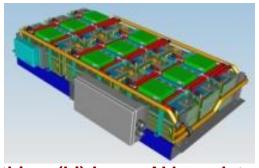
Elektromobilität weltweit

Bestand BEV+PHEV (geschätzt)

	01/2021	Zum Vergleich: Bevölkerung
Deutschland 142 Einw./E-PKW	588 944	84 Mio.
Europa 234 Einw./E-PKW	3 200 000	750 Mio.
VR China 344 Einw./E-PKW	4 200 000	1 443 Mio.
USA 196 Einw./E-PKW	1 700 000	333 Mio.

Quellen: https://www.tz.de/auto, https://countrymeters.info

Elektromobilität: Vorteile/Hindernisse



1) Vorteile:

- Verringerung der direkten Abgas- & Lärm-Emissionen der Fahrzeuge
- Verringerung der CO₂-Emissionen durch Nutzung von "grüner" el. Energie:
 - a) aus erneuerbaren Energiequellen
 - b) aus fossilen Quellen mit höherem Wirkungsgrad und/oder verringertem CO₂
- Nutzung eines "Energiemix" (nicht nur Benzin oder Dieselkraftstoff!)
- Besseres Beschleunigungs-/Bremsverhalten durch den E-Motor ("Fahrspaß")

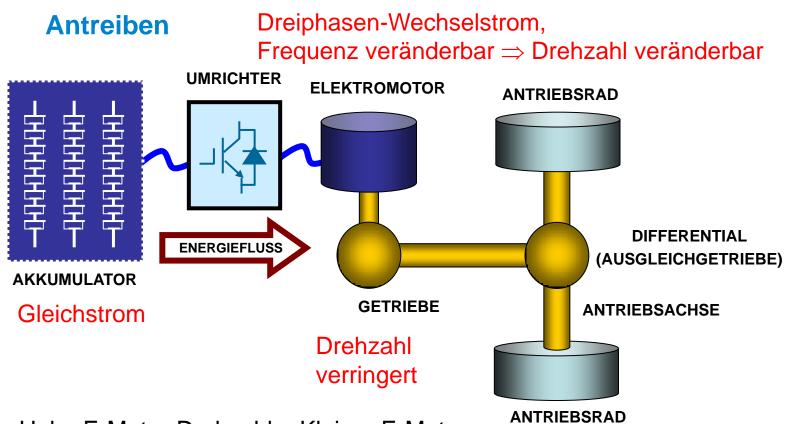
2) Hindernisse:

- Bedarf an leistungsfähigen, sicheren und wirtschaftlichen Akkumulatoren
- Bedarf einer ausreichenden, leistungsfähigen und wirtschaftlichen Lade-Infrastruktur

Quelle: SSD Drives & Parker Hannifin

Lithium (Li)-lonen-Akkumulator

Elektromobilität – nur ein Schlagwort?



- Was ist Elektromobilität?
- Konzepte f
 ür E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven für die Elektromobilität

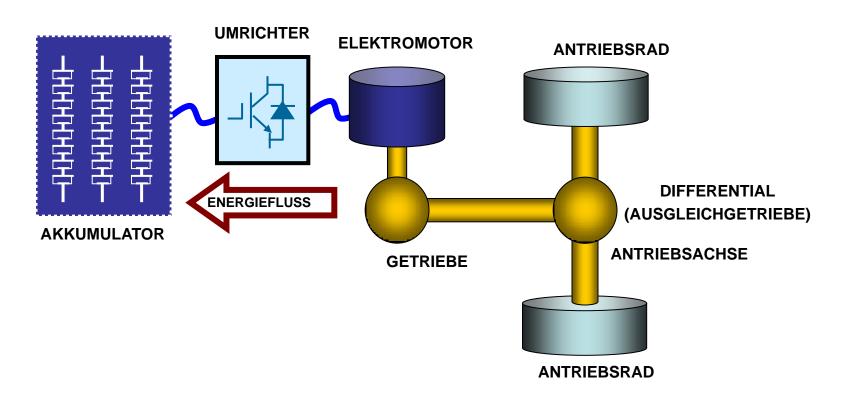
Elektroantrieb mit Drehstrommotor (1)

- Hohe E-Motor-Drehzahl = Kleiner E-Motor;
- Deshalb: Getriebe für niedrige Raddrehzahl!

Quelle: Parker Hannifin

Elektroantrieb mit Drehstrommotor (2)

Antreiben:


- Elektrischer Gleichstrom wird dem Akkumulator entnommen.
- Der Umrichter formt diesen Strom in drei 120° phasenversetzte Wechselströme um, die den E-Motor speisen.
- Der E-Motor wandelt die elektrische Energie in ein mechanisches Drehmoment um und treibt mit veränderbarer Drehzahl ein i. A. nicht-schaltbares Getriebe an.
- Das Getriebe verringert die Drehzahl auf die langsame Raddrehzahl etwa 1:9 und treibt die Räder des Fahrzeugs.
- Drehzahlveränderbarer E-Motor: Keine Gangschaltung nötig!

Bremsenergierückgewinnung beim Elektroantrieb (1)

"Rekuperierendes" Bremsen

Quelle: Parker Hannifin

Bremsenergierückgewinnung beim Elektroantrieb (2)

"Rekuperierendes" Bremsen:

- Die bremsenden Antriebsräder treiben über das Getriebe die E-Maschine an, die zum Generator wird und Wechselstrom erzeugt.
- Der Umrichter formt diesen Wechselstrom in Gleichstrom um und LÄDT den Akkumulator, wo die Bremsenergie als elektrische Ladung und damit in Form elektrischer Energie gespeichert wird.
- Bremsenergie speichern kann ein Antrieb mit Verbrennungskraftmaschine
 i. A. NICHT! (Sonderlösungen: z. B. Schwungrad)
- Stadtzyklus: Rekuperation beim Bremsen: Ca. 10% Energierückgewinnung!

Elektrofahrzeuge – Stand der Technik

Typische Fahrzeugparameter von Elektrofahrzeugen

	Kleinwagen	Mittelklasse	Oberklasse
BEV	Hyundai IONIQ	VW e-Golf	Tesla X 100D
Realer Verbrauch je 100 km	14.7 kWh	17.3 kWh	24 kWh
CO ₂ -Emission Batterie- Herstellung (D): 150 kg/kWh Speicherinhalt	4.5 t	4.5 t	12.3 t
Batterie-Speicherkapazität	30 kWh	30 kWh	82 kWh
Ø-Reichweite in km	204 km	173 km	342 km

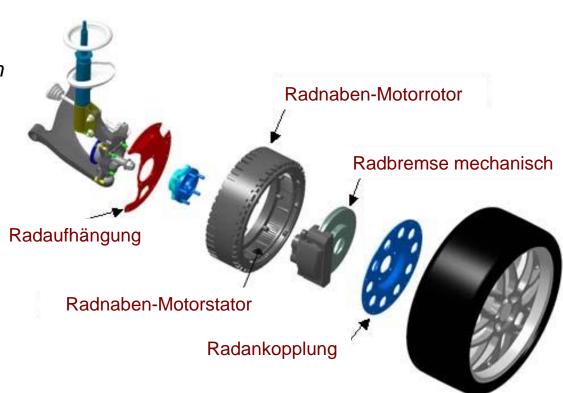
Quelle: Fraunhofer ISI, 2019

Quelle: Hyundai

Quelle: VW

Quelle: Tesla

Sonderfall: Getriebeloser Radnabenantrieb



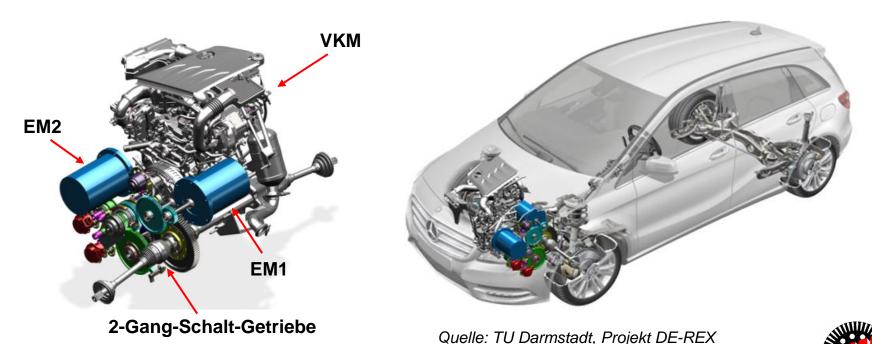
Beispiel:

Radnaben-Antrieb

Mitsubishi Lancer Evolution

MIEV

- E-Motor-Drehzahl = niedrige Raddrehzahl; daher:
- E-Motor relativ groß und schwer, deshalb selten ausgeführt

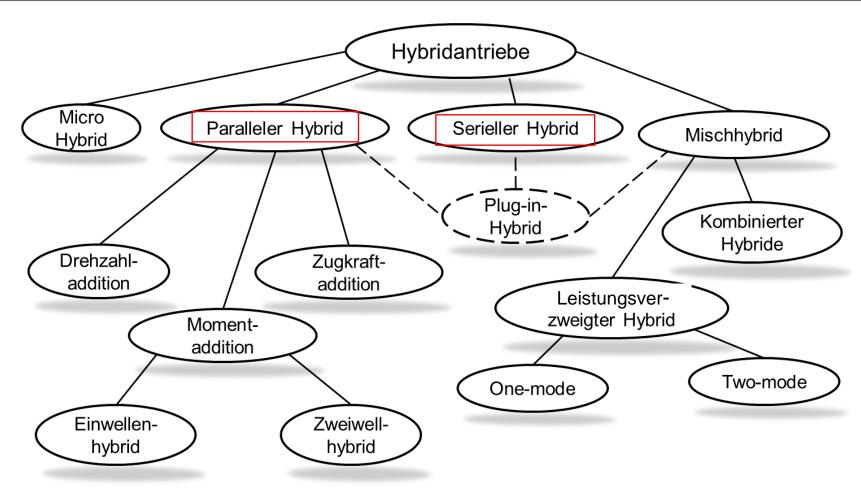

Quelle: Mitsubishi

Range Extender

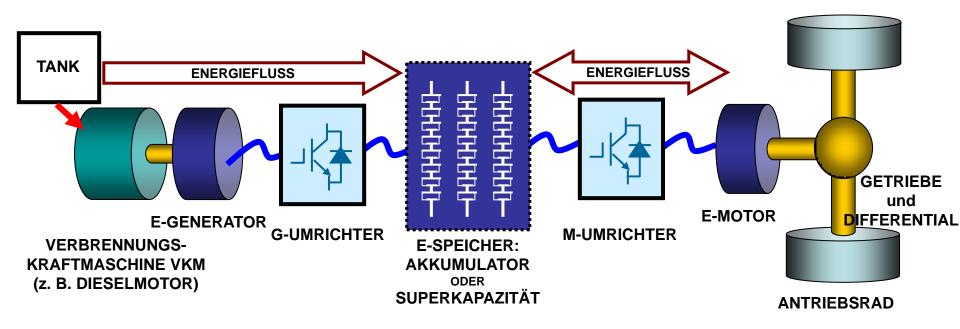
Beispiel: Doppel-E-Antrieb mit 2-Gang-Getriebe

- a) Projekt **DE-REX** der *TU Darmstadt* zusammen mit drei Industriepartnern:
 - Zwei kleinere E-Maschinen (**EM**, 2 x 48 kW) + "Range Extender" (**VKM**, 65 kW)
 - Sowohl Seriell- als auch Parallelhybridbetrieb möglich
 - Besserer Wirkungsgrad im Teillastbereich
- b) Weiterführung: Projekt DE4LoRa, TU Darmstadt zusammen mit mehreren Industriepartnern

Hybride Antriebstechnik für Kraftfahrzeuge


- Unterschiedliche Hybrid-Antriebskonzepte mit ihren Vor-/Nachteilen!
- Serieller Hybrid
- Paralleler Hybrid
- Paralleler Hybrid-Sonderfall: "Hybrid-through-the-Road"
- Misch-Hybrid: Meist: Leistungsverzweigter Hybrid

Hybridantriebsvarianten



Seriellhybrid (1)

Quelle: Parker Hannifin

Seriellhybrid (2)

- VKM treibt mit konstanter Drehzahl einen E-Generator (G), dessen Wechselstrom über einen G-Umrichter in Gleichstrom umgeformt wird und im E-Speicher gespeichert wird.
- Der M-Umrichter formt diesen Strom in Wechselstrom um und speist den E-Motor (M).
- Der E-Motor wandelt die elektrische Energie in eine mechanisches Drehmoment um und treibt mit veränderbarer Drehzahl über das Getriebe die Räder des Fahrzeugs.
- Veränderbare Drehzahl: Keine Gangschaltung nötig!
- Beim Bremsen wird der E-Motor zum Generator und speist die Bremsenergie in den E-Speicher.

Seriellhybrid: Vor-/Nachteile

Vorteile:

- Keine mechanische Verbindung von VKM und Straße, daher Freiheiten beim Fahrzeugdesign (z. B. Niederflurbus)
- VKM nur zur Stromerzeugung, daher Betrieb der VKM mit bestem Wirkungsgrad
- Kein großes Anfahrmoment der VKM nötig, kann kleiner ausgelegt werden ("Down-sizing" der VKM) = geringere Leerverluste
- Kein Summier-Getriebe notwendig
- Akkumulator oder Superkapazitätsspeicher kleiner als beim E-Fahrzeug

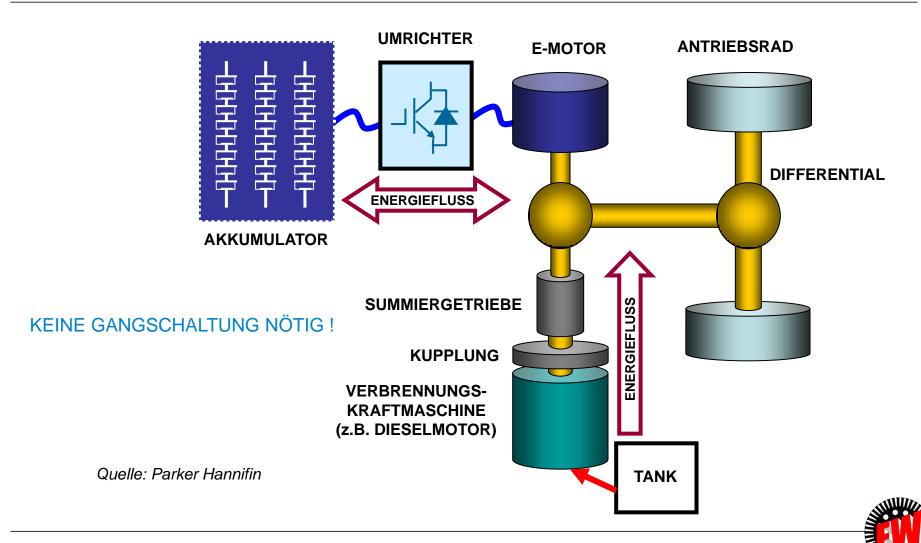
Nachteile:

- Serienschaltung aller Energiewandlungsprozesse verringert Gesamtwirkungsgrad:
 0.4 x 0.9 x 0.9 = 0.32
- Drei vollwertige Maschinen nötig (zwei E-Maschinen, eine VKM)

VERBRENNUNGSKRAFTMASCHINE: VKM

Seriell-Hybridantrieb

Energetische Vorteile


- Kraftstoffeinsparung eines Busses einer städtischen Buslinie im Stadtverkehr:
 ca. 21% ... 25%
- a) durch den Einsatz kleinerer Dieselmotoren (kein Anfahrmoment nötig),
- b) durch Rückspeisen von Bremsenergie bei den Haltestellen und "roten Ampeln",
- c) durch Betrieb des Dieselmotors bei möglichst hohem Wirkungsgrad über ein geeignetes "Energiemanagement"!
- <u>Beispiel:</u> Bus Citaro von Daimler:
 Motor mit 4.81 statt 121 Hubraum ⇒ 30% Kraftstoffersparnis
- <u>Weiterer Vorteil des Seriell-Hybrid-Antriebs</u>:
 Leichtere Realisierung der Niederflur-Bauweise für bequemen Ein-/Ausstieg

Quelle: S. Dewenter TU Darmstadt 2012

Parallelhybrid (1)

Parallelhybrid (2)

- Über die Kupplung kann die VKM und/oder der E-Motor das Fahrzeug antreiben.
- Beide können ihre Kräfte über das Summiergetriebe addieren.
- Die VKM kann über die E-Maschine den Akkumulator ("Batterie") laden.
- Beim Bremsen wird die E-Maschine zum Generator und speist die Bremsenergie in den Akkumulator.

Parallelhybrid: Vor-/Nachteile

Vorteile:

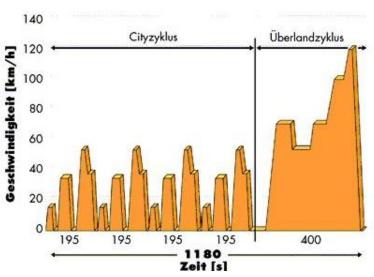
- Nur zwei Maschinen nötig
- VKM und E-Maschine können unabhängig voneinander antreiben
- Teil des Vortriebs direkt durch VKM = keine "unnötige" Energiewandlung
- Energie-Einsparpotential, da VKM kleiner sein kann als beim konventionellen VKM-Auto ("Downsizing" der VKM)
- Akkumulator oder Superkapazitätsspeicher kleiner als beim E-Fahrzeug

Nachteile:

- VKM-Betriebspunkte von Fahrbedingung abhängig, daher: schlechte Teillastwirkungsgrade möglich
- Summiergetriebe und Kupplung nötig
- Aufwändiges Energiemanagement des "Zusammenspiels" der VKM und der E-Maschine

Parallel-Hybridantrieb

Energetische Vorteile


- Kraftstoffeinsparung im Stadtverkehr: ca. 15% ... 25%
 - a) ca. 10 % durch Abschalten der VKM bei "roten Ampeln" (VKM-Start-Stopp-Automatik)
 - b) ca. 10 % durch Rückspeisen von Bremsenergie

Quelle: M. Ade: Diss. TU Darmstadt. 2009

- Kraftstoffeinsparung im Überlandverkehr: Nur ca. 5%, da wenig Fahrzeugstillstand (a), wenige Bremsmanöver (b)

Testzyklus:

Neuer europäischer Fahrzyklus (NEFZ) zur Messung von Emissionen und Normverbrauch von PKWs

Elektrofahrzeuge – Stand der Technik

Typische Fahrzeugparameter von Plug-in-Hybridfahrzeugen

	Kompaktklasse	Mittelklasse	Oberklasse
PHEV	Kia Niro 1.6 GDI	Citroën DS4	Mercedes S 560 e
Realer Verbrauch je 100 km	15.1 kWh	24.8 kWh	27.0 kWh
Leistung: VKM / E-Antrieb	77 kW / 45 kW	132 kW / 81 kW	260 kW / 90 kW
Batterie-Speicherkapazität	8.6 kWh	12.4 kWh	13.5 kWh
Ø-Reichweite (rein elektrisch)	57 km	50 km	50 km

Quelle: Herstellerangaben, ADAC, auto motor sport

Quelle: Kia

Quelle: Citroën

Quelle: Mercedes

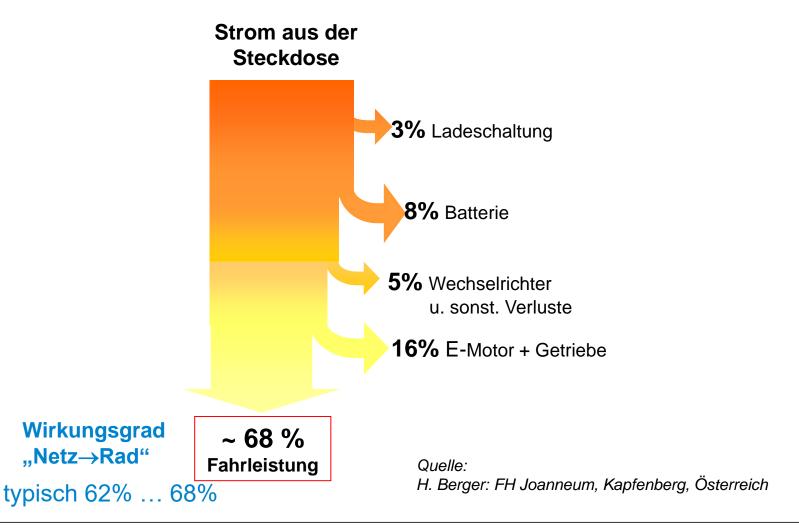
Elektromobilität – nur ein Schlagwort?

- Was ist Elektromobilität?
- Konzepte f
 ür E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven für die Elektromobilität

Energieverbrauch und CO₂-Erzeugung eines Mittelklasse-PKWs im Betrieb

- Beispiel: 1500 kg-Mittelklassewagen mit VKM
- Verbrauch 5 Liter auf 100 km, bei 80 km/h für die Fahrenergie für Rollreibungs- und Luftwiderstand: 12 kWh
- 5 Liter Sprit verbrannt = ca. 50 kWh Energie
- Je kWh verbranntem Sprit ca. 260 g CO₂ erzeugt

Wirkungsgrad des Automobils: 12 kWh / 50 kWh = 24%


Erzeugte Menge CO_2 : 260 g/kWh x 50 kWh/100 km = 130 g CO_2 /km

- CO₂-Vorgabe der EU-Kommission seit 2021 für Neuwagen: 95 g CO₂/km
- Das entspricht 3.6 Liter Diesel bzw. 4.1 Liter Benzin auf 100 km.

TECHNISCHE UNIVERSITÄT DARMSTADT

Typischer Wirkungsgrad des E-Autos 68%

Energieverbrauch und CO₂-Erzeugung eines E-Autos im Betrieb

- Beispiel: 1500 kg-Mittelklassewagen mit E-Antrieb
- Auf 100 km, bei 80 km/h: Fahrenergie für Rollreibungs- und Luftwiderstand: 12 kWh
- Wirkungsgrad des Automobils: 68%
- Wirkungsgrad des deutschen Kraftwerksparks (2021):
 vom Primärenergieeinsatz zur Steckdose in DEUTSCHLAND: 42%
- Je erzeugter kWh (el. Energie) entstehen in DEUTSCHLAND 470 g CO₂
- Gesamt-Wirkungsgrad vom Kraftwerk zum E-Auto: 0.42 x 0.68 = 29%
- Benötigte el. Energie für 100 km bei 80 km/h: 12 kWh/0.68 = 18 kWh
- Erzeugte Menge CO_2 : 470 g/kWh x 18 kWh/100 km = 85 g CO_2 /km (-35%)

Betrieblicher Energieverbrauch und CO₂-Erzeugung im Vergleich

• Beispiel: 1500 kg-Mittelklassewagen: 100 km bei 80 km/h:

a) E-Energiemix für *DEUTSCHLAND*

	VKM-Antrieb	E-Antrieb	_	
Gesamt-Wirkungsgrad	24%	29%	29/24 = 1.21	+21%
CO ₂ -Erzeugung	130 g/km	85 g/km	85/130 = 0.6 5	-35%

b) E-Energiemix für *SCHWEIZ* (55% Wasserkraft, 40% Kernkraft)

	VKM-Antrieb	E-Antrieb	,		
Gesamt-Wirkungsgrad	24%	36%	36/24 = 1.5	+50%	
CO ₂ -Erzeugung	130 g/km	9 g/km	9/130 = 0.07	-93%	

• Der Umweltnutzen der E-Mobilität hängt entscheidend vom E-Energiemix bei der Erzeugung der elektrischen Energie ab.

Exkurs: "Graue" Energie eines Geräts (Produkts)

- Erforderliche Energiemenge für Herstellung, Transport, Lagerung, Recycling und/oder Entsorgung eines Produkts, aber nicht während der Nutzung des Produkts
- Für die graue Energie werden
 - a) auch alle Vorprodukte bis zur Rohstoffgewinnung berücksichtigt und
 - b) der Energieeinsatz aller angewandten Produktionsprozesse addiert.
- <u>Beispiele:</u> Grobe Richtwerte der eingesetzten fossilen Primärenergie!

Personal Computer: 4 000 kWh

PKW mit VKM, Mittelklasse: $60\ 000\ \text{kWh}_{th} \Rightarrow x\ 0.42 = 25\ 200\ \text{kWh}_{el}$

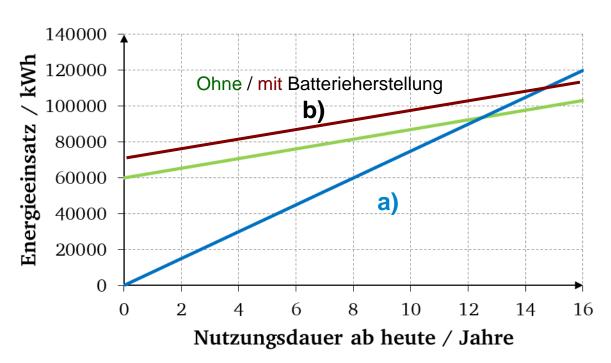
1 kg Bohnen trocken* (Import N-Afrika): 10 kWh

1 kg Bohnen trocken* (Inland): 1 kWh

Quelle: Verband Schweizerischer Elektrizitätsunternehmen VSE 2009

TECHNISCHE UNIVERSITÄT DARMSTADT

Energetische Betrachtung: Fahrzeugneukauf

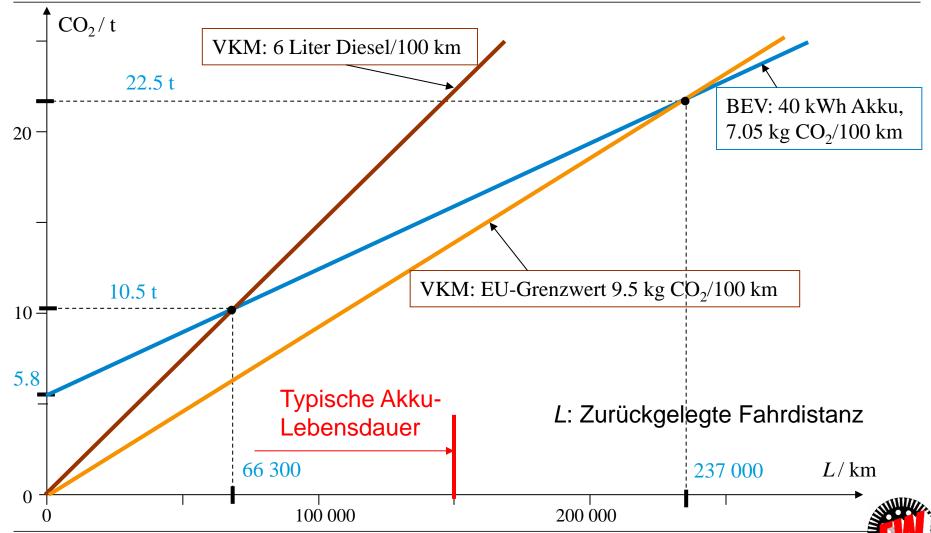

Beispiel: Mittelklasse-PKW mit Jahresfahr "leistung" 15 000 km:

a) <u>Bestehendes</u> Verbrennungsmotor-Fahrzeug behalten (5 Liter/100 km)

Energieeinsatz: 50 kWh/100 km, entspricht 7500 kWh/a

b) Neukauf eines Mittelklasse-Elektroautos

Energieeinsatz: 18 kWh/100 km, entspricht 2700 kWh/a + 60 000 kWh_{th} "graue Energie" +*)


+*) Energie für Li-Ionen-Batterieherstellung (D): 300 kWh_{el} / 700 kWh_{th} je 1kWh Speicherinhalt: 18 kWh-Speicher: 5 400 kWh_{el} / 12 600 kWh_{th}

Energieeinsatz durch Wartung ist hierbei nicht berücksichtigt.

a) Diesel-VKM

b) EU-Grenzwert

Beispiel: 1500 kg-Mittelklassewagen: 100 km bei 80 km/h, E-Energiemix D: 0.47 kg CO₂/kWh,

- a) Diesel-VKM, Verbrauch 6 Liter/100 km ⇔ 15.8 kg CO₂/100 km
- b) EU-Grenzwert für VKM-Neuwagen ab 2021: 9.5 kg CO₂/100 km (entspricht 3.6 Liter Diesel-Treibstoff/100 km bzw. 4.1 Liter Benzin/100 km)
- c) E-Auto: 15 kWh/100 km, Akku: 40 kWh ⇒ 260 km Reichweite; 7.05 kg CO₂/100 km; 145 kg CO₂/kWh bei Herstellung je 1 kWh Akku-Speicherinhalt!

Akku-Herstellung Fahr-Energie $40 \text{ kWh} \cdot 145 \frac{\text{kg CO}_2}{\text{kWh}} + 0.0705 \frac{\text{kg CO}_2}{\text{km}} \cdot L = \begin{cases} 0.158 \frac{\text{kg CO}_2}{\text{km}} \cdot L \Rightarrow L^* = 66300 \text{ km} \\ 0.095 \frac{\text{kg CO}_2}{\text{km}} \cdot L \Rightarrow L^* = 237000 \text{ km} \end{cases}$

Akkumulatoren

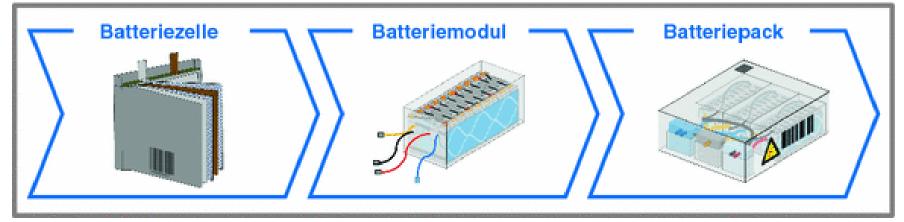
Eigenschaften der Li-Ionen-Akkumulatoren

Leistung	1 kW 50 MW
Energie gespeichert	bis 50 MWh
Leistungsdichte (gravimetrisch)	300 3000 W/kg
Leistungsdichte (volumenbezogen)	160 W/l
Energiedichte (gravimetrisch)	100 200 Wh/kg
Energiedichte (volumenbezogen)	200 500 Wh/l —
Zyklenwirkungsgrad	85 95%
Selbstentladung	1 5%/Monat
Lebensdauer (Zeit)	10 15 a
Lebensdauer (Zyklen)	1000 5000

- Leerlaufsspannung einer Li-Ionen-Zelle:
 U₇₀ = ca. 4.2 V
- Daher: Ca. 200 Zellen in Serie für *U*_{DC} = 800 V
- Parallelschaltung zur Stromerhöhung = "Packaging"
- Für hohe Energiedichte ⇒ niedrigere Zyklenzahl!

Hohe Energiedichte ⇒ niedrigere Zyklenzahl!

Quelle: Psola, J.-H.; Betriebs- und Einsatzmöglichkeiten von Energiespeichern im Kontext einer nachhaltigen Energieversorgung; 2016


TECHNISCHE UNIVERSITÄT DARMSTADT

Li-Ionen-Akkumulator: Lebensdauer

Leerlaufsspannung einer Li-Ionen-Zelle: $U_{70} = \text{ca. } 4.2 \text{ V}$

Serien- u. Parallelschaltung für hohe Spannung / Strom

Kühlsystem, Überwachung von Spannungen, Strom, Temperatur: Batteriemanagement

Quelle: Handbuch Lithium-Ionen-Batterien

- Typisch bei hoher Energiedichte: 1000 Ladezyklen
- "Lebensdauer": Reduktion auf 70 % ... 80 % der ursprünglichen Speicherfähigkeit
- Alterung durch: häufiges Schnellladen, hohe Energieentnahme, Kälte/Wärme

Akku: Speicher für die Elektromobilität

Energiespeicherung im Treibstoff und im Akkumulator

• Vergleich der "mobilen" Energiespeicher (volumenbezogen):

10 Liter Benzin, Diesel, Biodiesel

10 Liter Li-Ionen-Batterie

Li-Ionen-Akku: 0.4 kWh/Liter,

0.2 kWh/kg

• Energieinhalt

90 kWh

4 kWh

90/4 = 22-fache Speicherdichte

Nutzenergie = Energieinhalt x Fahrzeugwirkungsgrad

• Nutzenergie

Wirkungsgrad 20%

18 kWh

2.7 kWh Wirkungsgrad 68%

18/2.7 = 7-fache Reichweite

• Die geringere Speicherdichte selbst modernster Batterien erschwert den großtechnischen Einsatz der E-Mobility für den Überlandverkehr!

TECHNISCHE UNIVERSITÄT DARMSTADT

Li-Ionen-Akkumulator: Reichweite

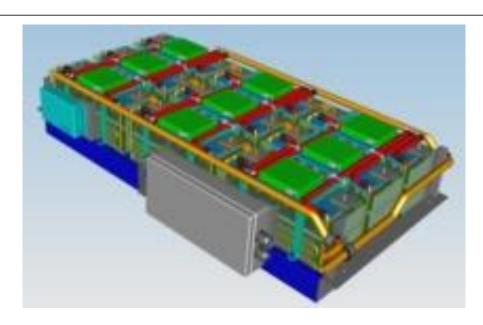
- Beispiel:

Mittelklasse-PKW: W = 30 kWh-Batterie, 0.2 kWh/kg: Masse 150 kg

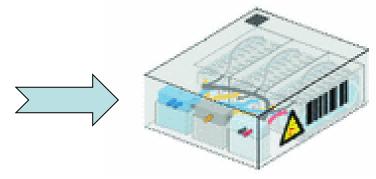
"Moderate" Fahrenergie $W_F/L = 15 \text{ kWh}/100 \text{ km}$, N = 1000 Ladezyklen,

Reichweite: 200 000 km

$$L = N \cdot W / W_F = 1000 \cdot 30 / (15/100) = 200000 \text{ km}$$


- Herstellergarantien für Akkumulatoren:

Für ca. 100 000 km ...160 000 km bzw. 5 ... 8 Jahre


TECHNISCHE UNIVERSITÄT DARMSTADT

Li-Ionen-Akkumulator: Kosten

Quelle: SSD Drives & Parker Hannifin

Lithium (Li)-lonen-Akkumulator

Batterie-Pack mit Kühlung und Zellenmanagement

- Batterie-Pack in der Regel die teuerste Ersatzteil-Komponente:
 Kosten je nach Speichergröße > 10 000 €
- Austausch einzelner Module wirtschaftlicher als Pack-Tausch
- <u>Beispiele:</u> Modultausch: a) BMW i3: 1200 €, b) VW ID.3: 1410 €

TECHNISCHE UNIVERSITÄT DARMSTADT

Rohstoffe für Li-Ionen-Akkumulatoren (1)

Lithium:

- Zunahme der E-Mobility bringt drastische Zunahme an Lithium-Bedarf!
- Starke Ausweitung des Lithium-Abbaus weltweit!
- Lithium-Abbau für europäischen Bedarf in Australien, Chile, VR China
- Künftig ev. auch Abbau in Portugal
- Chile: Atacama-Wüste: 30% der Lithium-Welt-Reserven
- Nachteil: Z. Zt.: Je 1 Tonne Lithium sind 70 Tonnen Wasser nötig!
- Forschung:

Fa. "Lilac Solutions (USA)": Halbierung des Wasserbedarfs durch Ionentauscher?

Quelle: vdi nachrichten 13.3.2020

TECHNISCHE UNIVERSITÄT DARMSTADT

Rohstoffe für Li-Ionen-Akkumulatoren (2)

Kobalt:

- Pluspol der Li-Ionen-Akkus: Kobaltoxid: Je Akku im Schnitt 13.5 kg Kobalt!
- Kongo/Afrika: > 50% des Kobalt-Weltbedarfs
- Hohe Kobalt-Kosten: ca. 29 000 Euro/Tonne!
- Kongo: 20% des Abbaus aus "Kleinbergbau" (selbstgebaute Minen, tw. Kinderarbeit)
- Forschung: Kobalt-Ersatz durch Li-Fe-P-O-Akkus:

Vorteile: Kein Kobalt, weniger Brandgefahr, -10% Kosten!


Nachteile: Geringere Energiedichte!

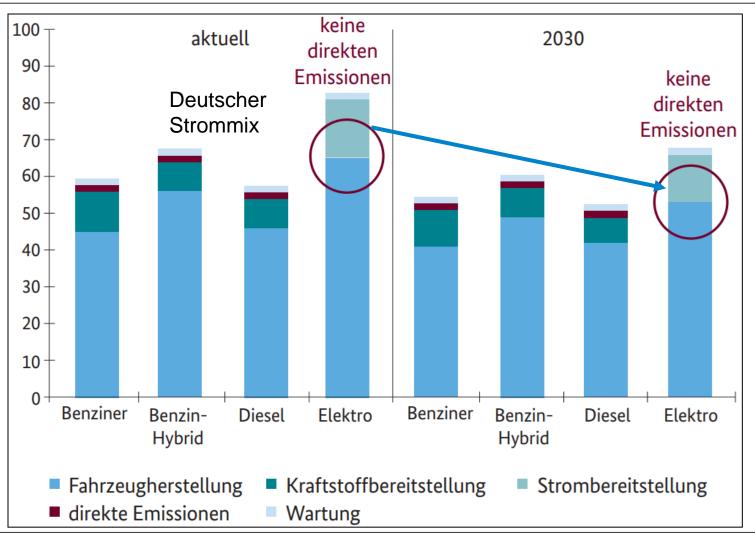
Quelle: vdi nachrichten 20.3.2020

TECHNISCHE UNIVERSITÄT DARMSTADT

Batterie-Recycling: Methodik

Quelle: LithoRec

Batterie-Recycling: Aktueller Stand



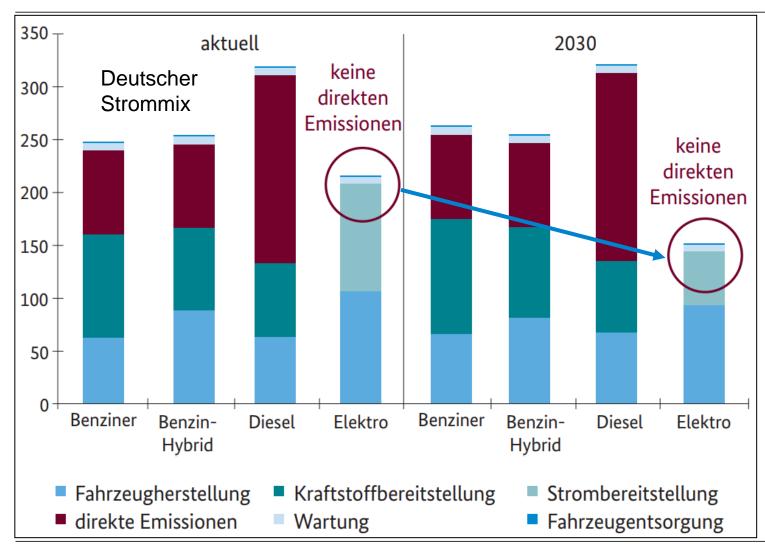
- Noch kein umfassendes Recycling-System vorhanden
- Übergangseinsatz in stationären Batteriespeichern zur Netzstützung möglich
- Pilotprojekte wie *LithoRec* (Partner u. a. *Opel, VW, TU Braunschweig*) versprechen nahezu vollständige Rückgewinnung.
- Recycling-Verfahren derzeit noch nicht kostendeckend

TECHNISCHE UNIVERSITÄT DARMSTADT

D: Feinstaub-Emissionen über Gesamtlebenszyklus (mg / km)

OHNE die wesentliche Komponente "Reifen- und Bremsenabrieb"

Quelle: Bundesumweltministerium, 2018


Feinstaubemissionen über den Gesamtlebenszyklus in mg/km

- E-Auto: Keine direkten Emissionen durch Kraftstoffverbrennung, daher: lokal betrachtet: Elektroantrieb bietet Vorteil!
- Herstellung des E-Fahrzeugs ist größte Emissionsquelle,
 aber Herstellung meist an (abgelegenen) Industrie-Standorten
- Bereitstellung der el. Energie u. a. auch durch thermische Kraftwerke ist (D) zweitgrößte Emissionsquelle, aber strenge Auflagen zur Filterung.
- Die deutlich höheren Emissionen durch
 - a) Reifenabnutzung und
 - b) Bremsbelagabnutzung sind hier nicht betrachtet, sind aber ähnlich groß für alle Antriebsarten.
 - ⇒ Abhilfe brächte der Wechsel zur vermehrten Nutzung des öff. Nahverkehrs!

Stickoxidemissionen über den Gesamtlebenszyklus in mg / km

Quelle: Bundesumweltministerium, 2018

Stickoxidemissionen über den Gesamtlebenszyklus in mg / km

- E-Auto: Keine direkten Emissionen durch Kraftstoffverbrennung, daher: lokal betrachtet: Elektroantrieb bietet Vorteil!
- Insbesondere im Vergleich zum Diesel-Antrieb: Positive Wirkung der Vermeidung von NO_x!

Elektromobilität – nur ein Schlagwort?

- Was ist Elektromobilität?
- Konzepte f
 ür E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven f
 ür die Elektromobilit
 ät

TECHNISCHE UNIVERSITÄT DARMSTADT

Kostenvergleich OHNE Akkumulator-Tausch

 <u>Beispiel:</u> Elektroauto im Vergleich mit Verbrennungsmotor-Automobil für D (Zurückgelegte Strecke / Jahr: 15 000 km)

	lyundai IONIQ Elektro Trend	Hyundai i30 1.4 T-GDI Trend DC		
Anschaffungspreis	33 300 € E-Auto	24 550 € VKM		
Ladeinfrastruktur	1100 €	0 €		
Kaufprämie (D)	-9 000 €	0 €		
Ø Verbrauch	14.7 kWh / 100 km	5.2 l / 100 km		
Verbrauchskosten	662€	1170 €		
Kfz-Steuer pro Jahr	0 €	98 €		
Versicherung	969 €	1260 €		
Wartung / Service	552€	744 €		
Gesamtkosten für 5 Jahre	36 315 €	40 910 €		

Quelle: The Mobility House, ADAC Newsletter 27.04.2021

• Achtung: Begrenzte Akkumulator-Lebensdauer ca. 8 Jahre!

TECHNISCHE UNIVERSITÄT DARMSTADT

Mehrkosten für E-Mobility: Trend

		2020	2030
Plug-in-Hybrid	PHEV	3600 €	2500 €
Battery el. vehicle	BEV	4500 €	1500 € (80 % Akku)
Fuel cell el. vehicle	FCEV	35000 € *	3000€

^{* 2020:} Noch zu kleine Stückzahlen, deshalb sehr teuer!

geschätzt!

Quelle: Studie: PricewaterhouseCooper, VDI nachrichten 27.11.2020

Ladesysteme für Elektrofahrzeuge

• Europäisches einheitliches Ladesystem Combined Charging System (CGS) seit 2016

a) Normal-Laden mit Wechselstrom: 3.7 kW ... 22 kW ... 44 kW, im Haushalt

b) Schnell-Laden mit Gleichstrom: 50 kW ... 150 kW ... (400 kW, Zukunft)

c) Induktives Laden (kontaktlos): 3.7 kW ... 22 kW

Strom-Tankstellen

b) Kombinierte
Ladestecker:

1-ph/3-ph-AC: IEC Typ 2

1-ph/3-ph-AC &
Gleichstrom: Combo 2

Quelle: Nationale Plattform Elektromobilität

a) Hausanschluss:

Einphasig 1-ph: 3.7 kW

Dreiphasig 3-ph: 22 kW (Drehstrom)

_ - N

L1, L2, L3, PE od. mit N

Quelle: Wikipedia

Diagolfolomous

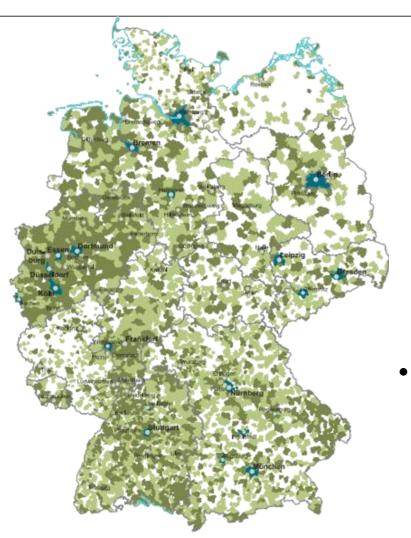
TECHNISCHE UNIVERSITÄT DARMSTADT

Einmal volltanken – Das Problem mit der Ladezeit

Vergleich der Lade-"Leistungen" und -Zeiten von VKM und E-Fahrzeug:

	Dieselfahrzeug Daimler E 200 blueEfficiency	Tesla Model S			
		Schnell-Laden	Normal-Laden	Achtung:	
Tankinhalt	59 Liter			Erhöhte Akku-Alterung bei häufigem Schnell-Laden!	
Energieinhal	580 kWh	100 kWh	100 kWh		
Tank-/Ladeze	eit 1 Minute	2 Stunden	4.5 Stunden	ca. 200-fache Dauer	
"Lade-Leistu	ng" 35 MW !	50 kW	22 kW	ca. 1000-fache Leistung	

Alternative: Austausch-Batterie? ⇒ Batterie-Standardisierung wäre notwendig!


Beispiele: Ladesysteme für Elektrofahrzeuge

- a) 1-phasiger Wechselstrom (Klemmen L, N, Haushaltsnetz), 1 x 230 V, 50 Hz: 3.7 kW-Haushalts-Ladestecker, 1-phasige Gleichrichtung im E-Auto
- <u>Beispiel:</u> 38.5 kWh-Akku, Ladezeit T = 38.5/3.7 = 10.4 Stunden, Wechselstrom (effektiv) aus Haushaltsnetz 3.7 kW/230 V = 16 A
- b) 3-phasig: Drehstrom (L1, L2, L3, N, Haushaltsnetz), 3 x 400 V, 50 Hz: 22 kW-Ladesteckdose "Wallbox", Gleichrichtung im E-Auto
- Beispiel: 38.5 kWh-Akku, Ladezeit T = 38.5/22 = 1.75 Stunden, Drehstrom (eff.) aus Haushaltsnetz 22 kW/(3x230 V) = 33 A
- c) Schnellladung DC: Öff. Drehstromnetz speist mit z. B. 50 kW oder 400 kW DC: Gleichrichtung aus Platzgründen in Ladesäule
- <u>Beispiel:</u> 38.5 kWh-Akku, Ladezeit *T* = 38.5/50 = 46 Minuten oder 6 Minuten Drehstrom (eff.) 50 kW/(3x230 V) = 74 A oder 600 A; Transformator ⇒ Ladegleichstrom bei 800 V DC: 63 A oder 500 A

TECHNISCHE UNIVERSITÄT DARMSTADT

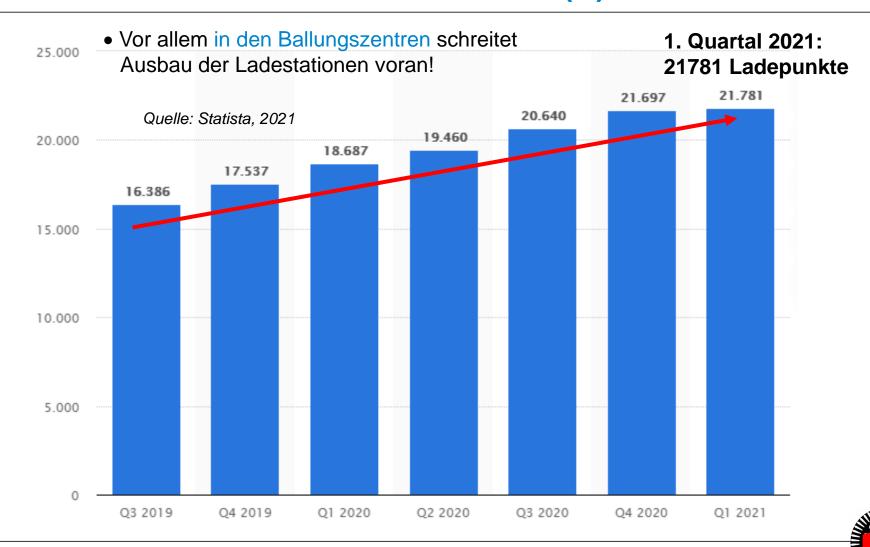
Öffentliche Lade-Infrastruktur in Deutschland

Quelle:
Nationale Plattform Elektromobilität

ANZAHL LADEPUNKTE (Strom-Tankstelle) JE GEMEINDE

unter 5

5 bis unter 100


100 und mehr

 Vor allem in den Ballungszentren schreitet Ausbau der Ladestationen voran!

TECHNISCHE UNIVERSITÄT DARMSTADT

Ausbau der öffentliche Lade-Punkte (D)

Deutschland: Kann unser aktuelles Stromnetz die Umstellung auf elektrisch betriebene Fahrzeuge bewältigen?

- 01/2021: BEV+PHEV: 588 944:
 - Angenommene 22 kW-Ladeleistung; "Gleichzeitigkeitsfaktor" 10%:
 - $W_{\text{lade}} = 588 \ 944 \ \text{x} \ 22 \ \text{kW} \ \text{x} \ 0.1 = 1.3 \ \text{GW}$:
 - 1.3/90 = 1.4 % der aktuellen deutschen el. Spitzenlast 90 GW.
- Ziel bis 2035: Anteil E-Autos 33% \Leftrightarrow 0.33 x 48 Mio. = 16 Mio. E-Autos: W_{Lade} = 16 Mio. x 22 kW x 0.1 = 35.2 GW: 35.2/90 = 40 % der aktuellen *deutschen* el. Spitzenlast 90 GW.
- Es sind Maßnahmen zur el. Netzstützung erforderlich:
 - a) Erweiterter Kraftwerkspark
 - b) Nachrüstungen in den Ortsnetzen

TECHNISCHE UNIVERSITÄT DARMSTADT

Straßenbahnen als Partner der Elektromobilität

- Auch hier ggf. Elektrospeicher (z. B. Batterie oder Superkapazität) an Bord
- Zwecke der Elektrospeicher:
- Rückgewinnung von Bremsenergie = Energieeinsparung, da DC-Unterwerke nicht ins öff. Netz rückspeisen
- Oberleitungsfreies Fahren auf kurzen Strecken (z. B. 100 m)
 bessere "Optik" vor Sehenswürdigkeiten
- Verkehrspolitische Experten/Vereine fordern:

Umdenken:

Weg vom Individualverkehr hin zum öff. Verkehr!

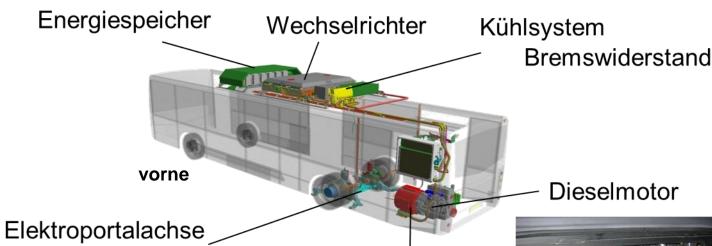
Bringt die größte Energieeinsparung u. Umweltnutzen!

Quelle: Verkehrsgesellschaft Frankfurt

Elektromobilität – nur ein Schlagwort?

- Was ist Elektromobilität?
- Konzepte für E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven f
 ür die Elektromobilit
 ät

Anwendungen für Stadtbusse


TECHNISCHE UNIVERSITÄT DARMSTADT

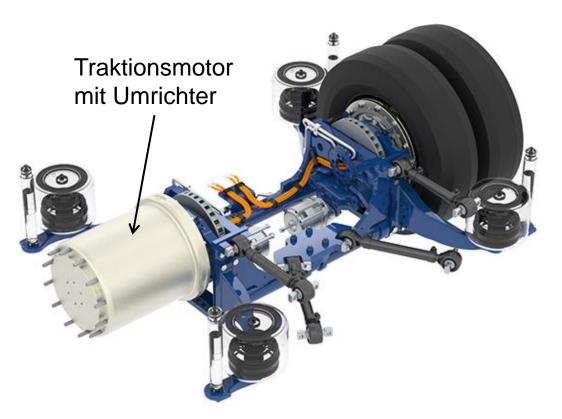
Seriell-Hybrid-Bus: Antriebskomponenten

hinten

Dieselmotor

Generator

Quelle: S. Dewenter TU Darmstadt 2012


mit zwei Traktionsmotoren

Anwendungen für Stadtbusse

Sonderfall: Radnabenantrieb für Niederflurigkeit

Technische Daten:

Achslast 13 t

Drehzahl 0...500 min⁻¹

Drehmoment 3700 Nm

Nennleistung 120 kW

Spannung 400...750 V

Maximalstrom 230 A

Wirkungsgrad 92 %

Quelle: Ziehl Abegg

Anwendungen für Stadtbusse

TECHNISCHE UNIVERSITÄT DARMSTADT

Beispiele: Elektrobusse im städtischen Bereich

Frankfurt (2021: 29 im Einsatz)

Akku: 282...376 kWh

E-Motorleistung: 180 kW

Bushersteller: u.a. Irizar, Spanien

Darmstadt (2021: 6, 2025: 30)

Akku: 288 kWh Bushersteller: Daimler, D

E-Motorleistung: 2 x 120 kW

Ø-Fahrleistung: 24 kW bei Ø 13 km/h

Reichweite: max. 170 km

Ladezeit: 2 Stunden

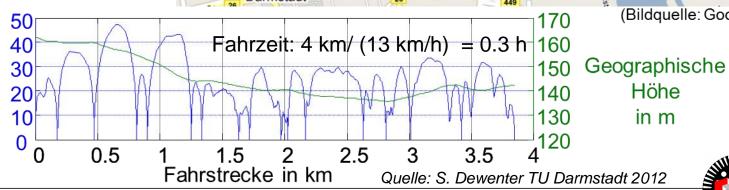
Quellen: HEAG mobilo, Darmstadt

Quellen: traffiQ, Frankfurt & Irizar, Spanien

Anwendungen für Stadtbusse

Beispiel: Buslinie L in **Darmstadt**

• Beispiel:


Buslinie *L* in Darmstadt

- Durchschnittsgeschwindigkeit13 km/h
- Maximale Steigung 4.5 %
- Zuladung 3200 kg

Batterie-Reichweite 170 km;
 ca. 12 h Betrieb möglich

Anwendungen für Stadtbusse

Elektrobus-Ladesysteme

a) Depotladen

Schonendes Laden der gesamten Flotte Ladeleistung 50...150 kW mehrere Stunden über Nacht

Tagesbetrieb, große
Batteriekapazität benötigt

Nur ein Depot nötig (z. B. HEAG in *Darmstadt*)

b) Gelegenheitsladen

Laden während planmäßiger Wartezeiten

150...600 kW

einige Minuten

Ideal als Ergänzung zu a), kleinere Batterien

Erhöhter Infrastrukturaufwand

c) "Flash-Laden"

Laden entlang der Buslinie

600 kW

< 30 Sekunden

Kurze Reichweite, sehr kleine Batterien

Hoher Infrastrukturaufwand

Quelle: ETG Journal, 2019 / ABB

Elektromobilität – nur ein Schlagwort?

- Was ist Elektromobilität?
- Konzepte f
 ür E- und Hybrid-Autos
- Was bringt die Elektromobilität für die Umwelt?
- Ökonomie und Komfort
- Anwendungen für Stadtbusse
- Perspektiven für die Elektromobilität

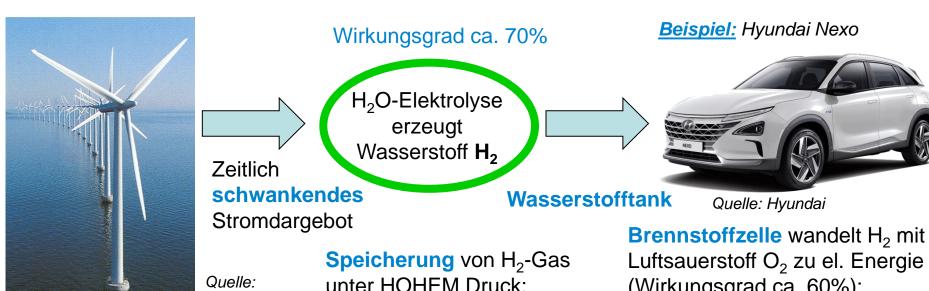
TECHNISCHE UNIVERSITÄT DARMSTADT

Nutzung regenerativer Energie für den Fahrzeugbetrieb

- Ziel: Nutzung der vermehrt zur Verfügung stehenden regenerativ (CO₂-frei) erzeugten el. Energie
- BEV + PHEV: Hoher "el. Netz-zum-Rad"- Wirkungsgrad 62% ... 68%
- BEV + PHEV: Akkus könnten ggf. künftig als Stromspeicher genutzt werden
- <u>Beispiel:</u> D: 5 Mio. PKW mit 30 kWh-Akku = 150 GWh Speicherenergie; Ist das <u>Dreifache</u> der *deutschen* Pumpspeicher-Kapazität 50 GWh!
- Deutschland: ca. 19 Mio. Nutzfahrzeuge (LKW, ...)
 Elektro-LKWs für Nah-Lieferverkehr: ca. 90 kWh/100 km, 120 kWh-Akku;
 Für Fernverkehr (große Reichweite > 800 ... 1000 km) sind Akkus viel zu groß/schwer!
- Alternative: Wasserstoff-Gas-Nutzung!

 Schlechterer Wirkungsgrad 33% "el. Netz-zum-Rad": 0.7 x 0.6 x 0.79 = 0.33

 Elektrolyse Wechselrichter


 E-Motor + Getriebe

ABER: Bessere Speichermöglichkeit! Schnelleres Betanken mit H₂!

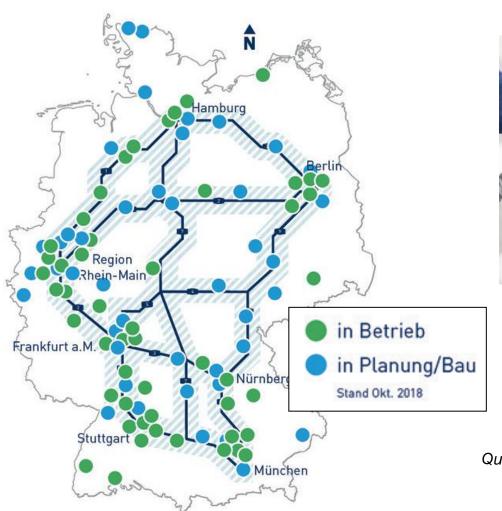
Wasserstoff aus regenerativer Energien

Regenerative Energiequelle: CO₂-freie Stromerzeugung

Winergy

unter HOHEM Druck: (350 ... 700 bar) "Wasserstoff"-Wirtschaft! (Wirkungsgrad ca. 60%):

⇒ E-Antrieb


Abgas = Wasserdampf H₂O

 Brennstoffzellen-Elektrofahrzeug: Serienreife Fahrzeuge sind bereits erhältlich, aber teuer!

TECHNISCHE UNIVERSITÄT DARMSTADT

Bestehende und geplante H₂-Tankstellen in Deutschland

Deutlich kürzere Tankzeiten als beim Batterieladen: ca. 3-5 Minuten

LKW: 350 bar, PKW: 700 bar

Quelle: H2Mobility

Nutzung von Wasserstoff als Kraftstoff

10 Liter Benzin, Diesel Biodiesel 10 Liter H₂-Gas 700 bar

Quelle:

H. Berger: FH Joanneum, Kapfenberg, Österreich & VDI

Energieinhalt

90 kWh

14.2 kWh

90/14.2 = 6-fache Speicherdichte

3.5-fache Speicherdichte H₂ vs. Akku

Nutzenergie

18 kWh

5.7 kWh

18/5.7 = 3-fache Reichweite

2-fache Reichweite H₂ vs. Akku

VKM

Brennstoffzelle: 60% Wechselrichter/E-Motor/

47%

Getriebe: 79%

Wirkungsgrad "Tank→Rad"

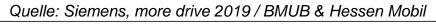
20%

H₂ im Vergleich zu VKM:

Relativ geringe Speicherdichte von H₂-Gas trotz hohem Druck!

Alternative: Oberleitungs-LKW!

E-Highway: 10 km Strecke, 670 V DC-Oberleitung



Pilotprojekt: ELISA, Autobahn A5

Bundesmittel ca. 14.6 Mio. Euro

Testbetrieb seit 07. Mai 2019 ... 2022

670 V DC-Oberleitungs-Hybrid-LKW

• Beispielfahrzeug:

Siemens eHighway "El Camino"

Pluspol Minuspol

Technische Daten:

Nettomasse 8 t

Bruttomasse 40 t

Antriebssystem **Parallelhybrid**

E-Motor-Leistung 130 kW

Akku-Kapazität 18 kWh

Akku-Reichweite 5...10 km bei 80 km/h

Wirkungsgrad:

Wechselrichter/E-Motor/Getriebe:

77 ... 79%

 Studie "Klimapfade für Deutschland": Oberleitungs-Hybrid-LKW sind trotz der erforderlichen Infrastrukturmaßnahmen die kosteneffizienteste Maßnahme.

Quelle: Siemens, more drive 2019

Zusammenfassung (1)

- Reine E-Antriebe in PKW, Bussen, LKW sind zur Serienreife entwickelt und haben einen hohen Wirkungsgrad. Es gibt zahlreiche E-Fahrzeuge im kommerziellen Handel.
- Das "Nadelöhr" ist die nach wie vor zu geringe Speicherdichte und begrenzte Zyklenzahl der Akkumulatoren.
- Für den Nahverkehr (unter 100 km Fahrstrecke) sind BEV-Fahrzeuge tauglich, wobei die Batterien etwa eine "mittlere Lebensdauer" von ca. 130 000 km aufweisen.

Zusammenfassung (2)

- Trotz dieser Einschränkungen und des höheren Anschaffungspreises werden E-Autos bei Kunden immer beliebter (D: Prämie!), da sie in Summe umweltschonender sind als herkömmliche VKM-Fahrzeuge, auch beim deutschen "E-Energiemix".
- Beim "Vollhybrid" wird ein sinnvoller Kompromiss zwischen
 a) begrenzter Umweltschonung und b) ausreichender Reichweite eingegangen.
- Unabhängig von der Elektromobilität ist der öffentliche Personennahverkehr v. a. im städtischen Bereich eine umweltfreundlichere Alternative zum Individualverkehr!

Elektromobilität – nur ein Schlagwort?

Danke für Ihre Aufmerksamkeit!

