1. Green energy conversion systems

1.2 Hydro energy converters

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

Hydro energy conversion

Hydraulic design of hydro power plant

(*H*: Head, $\rho_{H_2O} = 1000 \text{ kg/m}^3$):

Potential energy of barraged water:

$$W_{pot} = m \cdot g \cdot H = \rho_{H_2O} V \cdot g \cdot H$$

Power:

 $P_{in} = W_{pot} / t = \rho_{H_2O} \cdot (V / t) \cdot g \cdot H = \rho_{H_2O} \cdot \dot{V} \cdot g \cdot H$ V: Water flow rate Efficiency chain: Hydraulic efficiency: 0.95 Turbine efficiency: 0.9 Generator efficiency: 0.98 Power plant energy consumption: 0.97 Resulting efficiency of power plant: $\eta_{KW} = 0.95 \cdot 0.9 \cdot 0.98 \cdot 0.97 = 0.81$ Electrical power: $P_{out} = P_e = \eta_{KW} \cdot P_{in} = 0.81 \cdot 9.81 \cdot 1000 \cdot \dot{V} \cdot H$ "Rule of thumb": $P_e = 8000 \cdot \dot{V} \cdot H$, $[P_e] = W, [\dot{V}] = m^3 / s, [H] = m$ ASIA LÎNK European DARMSTADT Dept. of Electrical Energy Conversion Chinese 1.2/2Prof. A. Binder TECHNOLOGY Indineering

CO-OPERATION OFFICE

Classification of hydro power plants

- High head, low flow rate
- Medium head, medium flow rate
- Low head, high flow rate

MUM

*) 3 gorges *Xi-Ling*, *Wu*, *Qutang* at *Yangtsekiang* river (barrage: 2 km width, 600 km length)

**) Height of *Grad Dixence* barrage 285 m: bigger than *Eiffel*-tower in *Paris/France*.

Engineering

Low head	Medium head	High head	High head
High flow rate	Medium flow rate	Low flow rate	Low flow rate
River plant	River barrage plant	Pump storage plant	Pump storage plant
<i>Wallsee</i> /Austria	3 Gorges/China*)	<i>Kaprun</i> /Austria	Bieudron /Switzerland
H = 9.1 m	<i>H</i> = 183 m	H = 780 m	<i>H</i> = 1883 m **)
$\dot{V} = 2880 \text{ m}^3/\text{s}$	$\dot{V} = 12295 \text{ m}^3/\text{s}$	$\dot{V} = 32 \text{ m}^3/\text{s}$	$\dot{V} = 86 \text{ m}^3/\text{s}$
$P_e = 210 \text{ MW}$	$P_e = 18000 \text{ MW}$	$P_e = 200 \text{ MW}$	$P_e = 1295 \text{ MW}$
Kaplan-Turbines	Francis-Turbines	Pelton-Turbines	Pelton-Turbines
6 Generators, each 35 MW	26 Generators, each 692 MW	4 Generators, each 2x55 MW, 2x45 MW	3 Generators, each 432 MW
DARMSTADT UNIVERSITY OF Dept. of Electrical Energy Conversion TECHNOLOGY Prof. A. Binder 1.2/3			

Classification of hydro generator operation

- Mainly **fixed speed operation** directly at the grid, usually no inverter !
- "Small hydro" : Cage induction generators with gear, permanent magnet synchronous generators, or electrically excited synchronous generators to allow over-excited power generation
- Unit power: several 100 kW ... Several MW
- "Big hydro" : Electrically excited synchronous generators, allowing overexcited power generation, gearless = directly coupled to turbine
- Unit power: Several MW ... Several 100 MW
- Typical speed: Synchronous generators: $n = f_s/p$
- High head, low flow rate: high speed 750 ... 1000 ... 1500/min
- Medium head, medium flow rate: medium speed 200 ... 500 /min
- Low head, high flow rate: low speed 80 ... 200 /min

Surface finishing of Pelton turbine

Fixed blades

Source:

VATech Hydro, Austria

Two

symmetrical blade shells

Dept. of Electrical Energy Conversion Prof. A. Binder

"Small hydro" power plant with Pelton turbines

Source:

ABB, Switzerland

Dept. of Electrical Energy Conversion Prof. A. Binder

Small hydro Francis turbine in spiral casing

Electrically excited synchronous generator

Terminal box

Water inlet

Spiral housing distributes water flow evenly on turbine

Francis turbine runner, fixed curved blades

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

"Small hydro" power plant with Francis turbines

Francis turbine spiral housing

- Flywheel for increase of inertia to reduce acceleration in case of dropping electrical load
- -Heat exchanger
- Electrically excited synchronous generator

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

"Big hydro" Francis turbine with guiding blades visible

Turbine runner with fixed blades

Turning guiding blades for guiding water in-flow to the turbine runner

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

Mounting of Kaplan turbine runner into turbine housing

Turbine housing

Turbine runner with 5 moveable blades

(propeller turbine)

Lever ring to move all guiding blades synchronously

Levers for adjusting the guiding blades, correcting the angle of water inflow at variable flow rate

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

Kaplan turbine already mounted

View on two parallel turbine housings, lying horizontally in the plant

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

Mounting of *Kaplan* unit into river bed for bulb turbine power plant

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

"Big hydro" bulb turbine generators: Kaplan

- Four blade runner
- Each blade milled in optimum stream-line profile
- Fixed speed operation
- Pitch control: Blade angle adjusted by hydraulic actuators to ensure optimum torque at variable water flow

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

"Big hydro" stop-cock unit ahead of turbine

In case of emergency or maintenance the water intake of the turbine is closed by a big "stopcock"

Source:

VATech Hydro, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

Pump unit for pump storage plant

Dept. of Electrical Energy Conversion Prof. A. Binder

Three-stage pump for pump storage plant

Electrically excited synchronous motorgenerator

Pump housing

Pump runner

EUROPEAID

CO-OPERATION OFFICE

Pelton turbine data - Over speed at load drop

Example: Simple estimation:

- Power plant *Bieudron*/Wallis, Switzerland:
- Speed of water jet: $v_1 = 600$ km/h = 166.6 m/s.
- Circumference speed of turbine runner:

theoretically $v_u = v_1/2 = 83.3$ m/s in reality due to losses: $v_u = 103.5$ m/s = $d\pi n$.

- With a runner diameter of d = 4.65 m we get a rated speed of n = 428.6 /min.
- At load dropping: Water jet speed = circumference speed: Over speed: 166.6/103.5 = 1.61; in reality: 1.86-fach: *n_{max}* = 800/min

Generator data:

Salient pole electrically excited synchronous machine: 432 MW, 465 MVA ($\cos \varphi = 0.93$), Generator mass 800 t 2*p* = 14, 50 Hz, 428.6 /min, 21 kV, 12.78 kA.

Generators for "Small Hydro Power"

Power plant Freudenau/Vienna-Austria

Power plant Djebel Aulia/Sudan-Nile

Waste water flow at river barrages: Integration of many small *Kaplan*-Turbines (with fixed blades as propeller turbines) in barrages

Matrix-like arrangement of turbines yields a flat resulting unit: patented MATRIX concept

Cage induction generator for matrix turbine application

-Water intake for propeller turbine

-Induction generator

Agonitz/Austria

300 kW

Small hydro power plant

Source:

ELIN EBG Motors, Austria

Induction generators are an inductive load: Compensation by capacitor banks necessary, so PM-Synchronous generators preferred: lower losses, no compensation needed, as it operates at unity power factor !

Dept. of Electrical Energy Conversion Prof. A. Binder

Mounting of prototype matrix generator at Agonitz

Source: ELIN EBG Motors, Austria

Dept. of Electrical Energy Conversion Prof. A. Binder

PM-Generators for "Small Hydro Power"

Straight flow Turbines with PMrotor mounted on turbine runner

Generator stator sealed by nonconducting tube

PM-Rotor is running in water flow

Useful concept for matrix turbine

_Stator core

-Stator winding

-Permanent magnet

Source: VATech Hydro, Austria

Turbine blade

Generator operates with copper damper cylinder directly at the grid

Dept. of Electrical Energy Conversion Prof. A. Binder

