6. Momentenwelligkeit

Institut für Elektrische Energiewandlung Prof. A. Binder

Torque ripple of brushless DC motors

- Cogging torque: No-load torque ripple due to rotor magnets and stator slot openings
- Pulsating torque at ideal sine wave current: Torque variation at load due to interaction between stator and rotor field. Step-like stator mmf distribution due to distributed stator winding may be regarded as FOURIER sum of space harmonics, causing pulsating torque components with rotor magnet field.
- Pulsating torque due to current ripple: Inverter switching causes current ripple = current time harmonics. Each current harmonic causes a stator fundamental field, which interacts with rotor PM field.

TECHNISCHE UNIVERSITÄT DARMSTADT Institut für Elektrische Energiewandlung Prof. A. Binder

Cogging torque *M*_{cog} and pulsating load torque

Cogging effect at no-load $(i_s = 0)$:

Unaligned position: rotor tangential magnetic pull F_t on stator tooth sides generates torque,

Aligned position: sum $F_t = 0$, no torque

Typical good values:
$$\hat{w}_{M0} \sim 0.5\%...1\%$$

Pulsating load torque:

Quantification of torque ripple from measured torque time function,

e.g. measured with strain gauge torque-meter:

$$\hat{w}_{M} = \frac{\hat{M}_{cog}}{M_{av}} = \frac{(M_{\max} - M_{\min})/2}{(M_{\max} + M_{\min})/2}$$

Institut für Elektrische Energiewandlung Prof. A. Binder

Determination of load torque ripple

- Internal power varies with time, leading to torque and speed variation
- Speed variation much smaller than torque variation due to rotor inertia, hence we assume CONSTANT speed
- Internal power gives electromagnetic torque:

 $m_{e}(t) = \left(u_{p,U}(t) \cdot i_{U}(t) + u_{p,V}(t) \cdot i_{V}(t) + u_{p,W}(t) \cdot i_{W}(t) \right) / (2\pi n)$

• Ideal sine wave current feeding: NO inverter current ripple:

$$p_{\delta}(t) = \hat{U}_{p} \cos(\omega t) \cdot \hat{I} \cos(\omega t) + \hat{U}_{p} \cos(\omega t - 2\pi/3) \cdot \hat{I} \cos(\omega t - 2\pi/3) + \hat{U}_{p} \cos(\omega t - 4\pi/3) \cdot \hat{I} \cos(\omega t - 4\pi/3)$$

$$p_{\delta}(t) = \frac{\hat{U}_{p}\hat{I}}{2} \cdot \left[\cos(2\omega t) + 1\right] + \frac{\hat{U}_{p}\hat{I}}{2} \cdot \left[\cos(2\omega t - \frac{4\pi}{3}) + 1\right] + \frac{\hat{U}_{p}\hat{I}}{2} \cdot \left[\cos(2\omega t - \frac{8\pi}{3}) + 1\right]$$

$$p_{\delta}(t) = m\frac{\hat{U}_{p}\hat{I}}{2} = const.$$

$$M_{e} = \frac{(3/2) \cdot \hat{U}_{p} \cdot \hat{I}}{2 \cdot \pi \cdot n} = const.$$
No load torque ripple occurs due to current time function !

Institut für Elektrische Energiewandlung Prof. A. Binder

Load torque ripple in block commutated **brushless DC machines**

Generation of load torque ripple due to block current commutation with finite current rise time t_r (corresponding angle α_r) Typical block commutation torque ripple values:

Facit:

The generated load torque ripple is with six times fundamental frequency.

Institut für Elektrische Energiewandlung Prof. A. Binder

Two typical reasons for load torque ripple with block commutated brushless DC motors

a) deviation of block current from ideal rectangular shape (finite rise time t_r),

b) deviation of trapezoidal back EMF from ideal shape (slope increased by t_d)

Facit:

The sine wave commutated motor has a lower load dependent torque ripple (~ 1%) than the block commutated brushless DC drive (ca. 4 ... 5%).

TECHNISCHE UNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung Prof. A. Binder

Torsional resonance

UNIVERSITÄT DARMSTADT Institut für Elektrische Energiewandlung Prof. A. Binder

Excitation of torsional vibrations

It must be avoided that the dominant cogging torque frequency excites the torsion resonance of the drive system. This can be achieved by designing the drive with a stiff coupling (c: high value) to stay with cogging torque frequency below the resonance.

Institut für Elektrische Energiewandlung Prof. A. Binder

Speed ripple due to torque pulsation

Speed ripple definition: $n(t) = n + \Delta n(t)$

From solution of torsional oscillation we know oscillation angle:

Angular accelaration is:
$$\ddot{\gamma}_M(t) = \frac{m_e(t) - m_s(t)}{J_M} = \frac{\hat{M}}{J_M} \cdot \left(1 - \frac{c/J_M}{\omega_o^2 - \omega^2}\right) \cdot \sin(\omega t)$$

Speed ripple: $\Delta n(t) = \dot{\gamma}_M(t)/(2\pi)$

$$\Delta n(t) = \dot{\gamma}_M(t) / (2\pi) = -\frac{\hat{M}}{2\pi \cdot \omega \cdot J_M} \cdot \left(1 - \frac{c / J_M}{\omega_o^2 - \omega^2}\right) \cdot \cos(\omega t)$$

Staying below the resonance $\omega << \omega_0$, we observe that especially at low speed the speed ripple amplitude, expressed as percentage of actual speed, increases with DECREASING speed:

$$\left|\frac{\Delta n}{n}\right| = \left|\frac{\hat{M}}{\left(2\pi\right)^2 \cdot k \cdot p \cdot n^2 \cdot J_M} \cdot \left(1 - \frac{c/J_M}{\omega_o^2 - \omega^2}\right)\right| \approx \frac{\hat{M}}{\left(2\pi\right)^2 \cdot k \cdot p \cdot n^2 \cdot \left(J_M + J_M\right)} \sim \frac{1}{n^2}$$

Institut für Elektrische Energiewandlung Prof. A. Binder

7. Zusatzverluste in umrichtergespeisten PM-**Synchronmaschinen**

UNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung Prof. A. Binder

Vergleich Asynchron-/Synchronmaschine: 30 kW, 24000/min

Identische Ständerausführung, Wassermantelkühlung, Spindellager:

Asynchronmaschine mit Kupfer-Ovalstab-Kurzschlusskäfig,

Synchronmaschine: PM-Läufer (Sm₂Co₁₇-Oberflächenmagnete) und Glasfaserhülse

Institut für Elektrische Energiewandlung Prof. A. Binder

Hi-Speed-Läufer: PM-Synchron- vs. Asynchron-Technik

<u>AC-Läufer:</u> 24000/min 30 kW, $d = I_{Fe} = 90$ mm 25 kW/dm³ dauernd

Vierpoliger PM-Läufer, geblechtes Joch, VOR dem Aufpressen der Glasfaser-Hülse

Vierpoliger Asynchron-Kupferkäfig-Läufer mit Ovalstäben:

Masse/Stab: 23 Gramm

Fliehkraft/Stab: 0.6 Tonnen

FECHNISCHE JNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung Prof. A. Binder

Sinusbetrieb 800 Hz: Vergleich Asynchron-/PM-Synchron

Motor	Asynchron, Kupferkäfig	PM-Synchron, Sm ₂ Co ₁₇
$U_{\rm s}$ (verkett.), $I_{\rm s}$, $\cos\varphi$	330 V, 72.8 A, 0.77	311 V, 62.2 A, 0.95
Drehzahl, Schlupf	23 821 /min, 0.008	24 000 /min, 0.0
Abgabeleistg. Pout	29 933 W	30 157 W
$P_{Cu,s}, P_{Cu,r}$	537 W, 251 W	353 W, 0 W
P_{Fe}, P_R, P_z	650 W, 480 W, 49 W	660 W, 440 W, 100 W
Kühlwassertemp.	ein: 41.5 °C, aus: 47.5 °C	ein: 44.4 °C, aus: 48.1 °C
Kühlwasserstrom	3.25 I/min	3.25 I/min
Erwärmung:	84.5 K / 68.5 K	42 K / 36 K
Wickelkopf / Nut *)		
Wirkungsgrad	93.7 %	95.1 %

*) Erwärmung über Wasseraustrittstemperatur

PM-Synchron: deutlich *niedrigere* Verluste und Erwärmung

Institut für Elektrische Energiewandlung Prof. A. Binder

Motorenprüfstand für 24 000/min, 30 kW

Rotortemperatur-Messung

Wasserkühlkreislauf

РМ-Synchron Test-Motor

- 30 kW
- 24 000 rpm
- 12 Nm
- 800 Hz

Drehmomentmesswelle

Institut für Elektrische Energiewandlung Prof. A. Binder FB 18 • Elektrotechnik und Informationstechnik

ASM

Last

Umrichterspeisung

- Zum Vergleich: Sinusumformer (bis 800 Hz, 40 kVA)
- PWM-IGBT-Spannungszwischenkreisumrichter: 90 kVA, bis 1400 Hz (Schaltfrequenz 12 kHz)
- Blocktaktung, variable Zwischenkreisspannung 0 ... 520 V, 50 kVA, Transistor-Wechselrichter

Umrichter-Ausgangsspannung \Rightarrow Oberschwingungen im Strom \Rightarrow Zusätzliche Luftspaltfelder \Rightarrow Zusätzliche Motor-Verluste \Rightarrow **Erhöhte Erwärmung**

<u>Abhilfe:</u>

Stromglättung durch Ausgangsdrossel bzw. Sinusfilter

FECHNISCHE JNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung Prof. A. Binder

Umrichterspeisung vs. Sinusspeisung

Permanent magnet synchronous motor: magnets $h_M = 3.5 \text{ mm}, d_B = 2.8 \text{ mm}, \delta = 0.7 \text{ mm}$			
Fundamental voltage, current, power factor	Ideal sine wave operation	Voltage six step inverter operation	
$U_{s,(1)}$ (line to line), I_s , $\cos \varphi_{(1)}$	301 V, 67.4 A, 0.89	309 V, 71.9 A, 0.84	
Motor output power Pout	30 144 W	30 159 W	
P_{Fe}	560 W	560 W	
P _{fr}	440 W	440 W	
$P_{Cu,s}$	430 W	522 W	
$P_{M+Fe,r}$	50 W	520 W	
Efficiency	95.3 %	93.65 %	

<u>Gemessene Verluste in einer PM Synchronmaschine mit</u> Oberflächenmagneten und massivem Rotorjoch

Abhilfe:

Stromglättung durch Ausgangsdrossel bzw. Sinusfilter

TECHNISCHE UNIVERSITÄT DARMSTADT

Institut für Elektrische Energiewandlung Prof. A. Binder

PM-Synchronmotor: Gemessene Erwärmung in Ständerwicklung und Läufermagneten

PWM mit Ausgangsdrossel +Blockspannung++PWM mit Sinusfilter+++Sinusumformerspeisung+++

(*PWM* <u>ohne</u> Filter: △9 zu hoch)

Numerische Berechnung der Zusatzverluste im Läufer

<u>Ergebnis:</u> Massives Läuferjoch: Zu hohe Verluste bei Blockspannungsspeisung; <u>Abhilfe:</u> Geblechtes Joch oder Sinusfilter

Institut für Elektrische Energiewandlung Prof. A. Binder

