Systemauslegung elektrifizierter Triebstränge

Eintägiger Einführungskurs

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder Vortragende: Dipl.-Ing. Stefan Dewenter Dipl.-Ing. Fabian Mink

Technische Universität Darmstadt Institut für Elektrische Energiewandlung abinder@ew.tu-darmstadt.de

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

- Hybridantriebstrang Antriebsarchitektur
- E-Auto Antriebskonzept
- Überblick Antriebskomponenten
- E-Motoren Eigenschaften
- Umrichter
- Energie-Speicher
- Feldorientierte Regelung
- Feldschwächung
- Wechselwirkung zwischen den elektrischen Komponenten
- Antriebs-Umsetzung im Fahrzeug
- Energiemanagement

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

1. Hybridantriebstrang – Antriebsarchitektur

Übersicht Hybridfahrzeugtypen

	Micro-Hybrid	Mild-Hybrid	Vollhybrid
Leistungsbereich [kW]	2-3	10-15	> 15
Spannung [V]	12	42	> 100
Motor Start/Stop	X	X	X
Rekuperation		X	X
Boost			X
Rein elektrisches Fahren			Х

Funktionen hybrider Antriebssysteme

Hybridfunktion Hybridsystem	Start- Stopp	Elektrisch Boosten	Re- kuperation	Elektrisch Fahren
Micro-HEV (~ 14V)	+	-	0	-
Mild-HEV (~ 42 V)	+	+	+	-
Medium-HEV (~ 144 V)	+	+	+	0
Strong-HEV (≥ 200 V)	+	+	+	+

+: gut möglich,

o: möglich,

-: nicht möglich

Quelle: M. Ade

Übersicht Hybridfahrzeugtypen

Parallelhybrid

Parallel Hybridantrieb

Beispiele für parallele hybride Antriebsstränge

Parallelhybrid

Seriellhybrid

<u>Beispiel:</u> Dieselelektrische Stadtbusse: Dieselmotor fährt im Bestpunkt = max. Wirkungsgrad (z. B. 43%)

E-Motoren über Umrichter drehzahlvariabel !

Seriellhybrid

Quelle:

Parker Hannifin

---- No mechanical connection ----

Seriell-Hybrid-Busse

Elektrische Komponenten:

- Amaturenbrett
- Antriebsumrichter
- Batteriesystem
- Antriebsmotoren
- Generator (PM AC)
- Umrichter zur Batterieladung

Quelle:

Parker Hannifin

Kombinierter Hybrid

Leistungsverzweigter Hybrid

Leistungsverzweigter Hybridantrieb

Beispiel: Toyota Prius: mit leistungsverzweigendem Getriebe,

Ni-Me-Hydrid-Batterie

Leistungsverzweigter Hybrid

<u>Beispiel:</u> HSD ("Hybrid Synergy Drive") des Toyota Prius mit Planetengetriebe

TECHNISCHE Inhalt UNIVERSITÄT DARMSTADT 2. E-Auto – Antriebskonzept

Zero Emission Vehicle – Definition

• **Definition** Zero Emission Vehicle:

Null Emissionen jeglicher Schadstoffe in Betrieb und Stillstand, keine Verdunstungsemissionen, keine indirekten Emissionen

- basierend auf der Umweltgesetzgebung des California Air Resources Board (CARB)
- Abgasgesetzgebung der CARB bindend in Kalifornien sowie 12 weiteren Staaten der USA
- Gesetzlich geforderter ZEV-Anteil steigt von
 - 10% in 2003 auf
 - 16% in 2018

Antriebsvarianten für ZEV Vorgaben und Zielgrößen

- *Beispiel*-Anforderungen an ein Zero-Emission-Fahrzeug:
- Gesetzlich geforderte Reichweite im FTP-72 Fahrzyklus 100 Meilen
 => 110 Meilen (177 km) Reichweite als Zielwert im Zyklus FTP-72
- Vorgaben im Beispiel:
 - 7 Sekunden Sprint Null auf 100 km/h
 - Merkmal für sportliches Fahren
 - vgl. VW Golf GTI, Tesla Roadster
 - Kurzzeitige Höchstgeschwindigkeit 150 km/h
 - keine Langstrecken-Limousine für Autobahnfahrten,
 - eher Pendlerfahrzeug für Stadtverkehr
- Annahme Fahrzeugleergewicht 900kg
 - vergleichbar mit Smart fortwo
 - Luftwiderstand $c_w A = 0.5$ (vergleichbar Smart Roadster)

TESLA Roadster (USA)

- Lithium-Ionen-Batterien:
 6381 Zellen = 11 Serienmodule
 1 Modul = 9 Serienbausteine
 1 Baustein = 69 Parallelzellen
- max. Drehmoment 271 Nm
- max. Leistung 185 kW
- Sportfahrzeug
- 1.2 Tonnen Leermasse
- 0 ... 100 km/h in 4 Sekunden
- max. 200 km/h (125 mph)
- max. Motordrehzahl: 13000/min
- Käfigläufer-Asynchronmotor

- Reichweite: 392 km im kombinierten EPA-Testzyklus bei 45 kWh Batterieenergie
- 3.5 h Ladezeit
- Lebensdauer 500 Zyklen: 500 x 392 = 200000 km
- Tesla Roadster (Quelle: http://www.teslamotors.com/)

Lightning GT (υκ)

- Lithium-Ionen-Batterien: (*AltairNano*: "NanoSafe") Nano-Titanat-Technologie statt Graphit
- max. Leistung 552 kW
- Sportfahrzeug
- Kohlefaser-Kevlar-Verbundkarosserie
- 0 ... 100 km/h in 4 Sekunden
- max. 210 km/h
- 4 PM-Synchronmotoren als brushless-DC Radnabenmotoren (*P*_N = 120 kW je Motor), PML Flightlink Ltd.

- Reichweite: 415 km bei voll geladener Batterie
- 10 min. Schnell-Ladung: 155 km Reichweite
- Lebensdauer: Nach 15000 Zyklen: 85% der Neu-Kapazität

Quelle: Lightning Car Company, UK

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

3. Überblick Antriebskomponenten

Antriebskomponenten Hybridfahrzeug

- Paarung Rad/Straße
- Getriebe / ggf. Kupplung
- Drehstrom-Elektromotor(en)
- Wechselrichter
- Batterie
- Verbrennungskraftmaschine

Datenaufbereitung Rad/Straße Getriebe Getriebe Wasserkühlung Wasserkühlung Wasserkühlung

Thermisches Netzwerk

Motor & Leistungs-

Kühler

Fahrwiderstände Simulation – Rad / Straße

Getriebe zwischen Rad und E-Motor

- Niedrige Raddrehzahl, hohe E-Motordrehzahl

 Hohe Motordrehzahl = kleiner E-Motor (Bauvolumen/Masse hängt maßgeblich von M ab)

Einstufiges Untersetzungsgetriebe

Ab ca. *i* = 10 zweistufiges Getriebe nötig!

TECHNISCHE UNIVERSITÄT DARMSTADT

Elektromotor (PM-Synchron)

- Beispiel: Brusa Hybrid Synchronous Machine 6.17.12
 - 40 kW Nennleistung, 85 Nm Nenndrehmoment
 - Auf dem Markt erhältlich
 - von Hobby-Bastlern heute f
 ür Elektroautos verwendet

Quelle: Brusa

Leistungselektronischer Steller (Wechselrichter)

Batterie

- Zwischenspeicherung von Energie (Elektrochemisch)
- Unterschiedliche Varianten, Vor- und Nachteile

NiMH-Batterie Toyota Prius

Quelle:

Toyota

Verschlossener Bleiakku für Elektrofahrzeuge

Quelle: Parker Hannifin

Batterievarianten: Ragone-Diagramm

Verbrennungskraftmaschine

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

4. E-Motoren - Eigenschaften

Typen von E-Motoren

- (Gleichstrommaschinen)
- Drehfeldmaschinen
 - Synchronmaschinen
 - Elektrisch erregtPermanentmagneterregt
 - Synchron-Reluktanzmaschine
 - Asynchronmaschinen
- Geschaltete Reluktanzmaschinen

Beispiel: PM-Synchronmaschine Brusa Nenndaten

Mechanische Eigenschaften		
Nutenzahl Q	36	
Polzahl	6	
Nuten je Strang und Pol q	2	

Elektrische Eigenschaften				
40				
4500				
85				
96				
164				
0,885				
95,7				
1800				

Quelle: Brusa

<u>Beispiel:</u> PM-Synchronmaschine Brusa Drehmoment-Leistungskurven

Beispiel: PM-Synchronmaschine Brusa Hauptabmessungen (nachgerechnet)

Geometrische Eigenschaften		
Außenlänge [mm]	240	
Durchmesser [mm]	260	
Rotor-Durchmesser [mm]	114	
Eisenlänge [mm]	120	
Luftspalt [mm]	1	
Bandage [mm]	2	
Magnethöhe [mm]	5	
Polbedeckung [%]	0,85	

<u>Beispiel:</u> Grenzkennlinien eines PM-Synchron-Motors (Brusa)

Bestimmung der Motorbetriebsgrößen zu gefordertem Drehmoment *M*_M und Drehzahl *n*_M

 $P_M = 2\pi n_M M_M$

Motorwellenmoment etwa gleich Luftspaltmoment: $M_M \approx M_e$ Erforderlicher q-Strom: $I_q = \frac{M_M}{3p \Psi_p / \sqrt{2}} < I_{s,max}$ bei $f_s = n_M.p, \ \omega_s = 2\pi f_s$

Erforderliche Spannung ohne Feldschwächung:

$$U_{s1} = \sqrt{\left(\omega_s \Psi_p / \sqrt{2} + R_s I_q\right)^2 + \left(\omega_s L_q I_q\right)^2} \le U_{s,\max}$$

Falls $U_{s1} > U_{s,max}$: Erforderlicher Feldschwächstrom I_d (negativ): (R_s vernachlässigt!)

$$I_{d} = \frac{\sqrt{U_{s,\max}^{2} - (\omega_{s}L_{q}I_{q})^{2}} - \omega_{s}\Psi_{p}/\sqrt{2}}{\omega_{s}L_{d}} \leq \sqrt{I_{s,\max}^{2} - I_{q}^{2}}$$

Motorstrom: $I_{s1} = \sqrt{I_{d}^{2} + I_{q}^{2}} \leq I_{s,\max}$

Falls I_d zu groß, so muss I_a und damit das Drehmoment verringert werden !

Verlustgruppen der PM-Maschine

1.Ständer:

- 1.a) Stromwärmeverluste inklusive Stromoberschwingungen $P_{Cu,s}$
- 1.b) Ummagnetisierungsverluste im Ständerblechpaket (Zähne und Joch) $P_{Fe,s} = P_{Fe,d} + P_{Fe,ys}$
- 2. Läufer:
- 2.a) Wirbelstromverluste in den Magneten P_M durch getakteten Ständerstrom und durch die nutöffnungsbedingte Flusspulsation
- 2.b) Ummagnetisierungsverluste im Läuferblechpaket *P*_{*Fe,r*} durch getakteten Ständerstrom

2.c) Reibungsverluste: Lager- und Lufthautreibung P_{ba+fr}

Verlustberechnung im PM-Synchronmotor

Stromwärmeverluste:
$$P_{Cu,s} = 3R_s(\vartheta) \cdot I_{s1}^2$$

Ummagnetisierungsverluste: $P_{Fe} = P_{Fe0} \cdot \left(\frac{\omega_s}{\omega_N}\right)^{1.8} \cdot \left(\frac{U_{s1}}{\omega_s \Psi_p / \sqrt{2}}\right)^2$
Reibungsverluste: $P_{fr} = 2\pi n_M M_{fr}(n_M)$

Zusatzverluste (Wirbelströme in Magneten, Läuferteilen, Wicklung) bei Sinusstrom: 1.5 < 2

$$P_{ad} = P_{ad,N} \cdot \left(\frac{\omega_s}{\omega_N}\right)^{1.5} \cdot \left(\frac{I_{s1}}{I_{sN}}\right)^2$$

Zusatzverluste durch Stromwelligkeit mit Schaltfrequenz (etwa konstanter Wert, u. a. von Modulationsgrad m abhängig): $P_{ad.inv}$

Motorgesamtverluste: $P_{d,M} = P_{Cu,s} + P_{Fe} + P_{ad} + P_{fr} + P_{ad,inv}$

Motorwirkungsgrad: $\eta_M = P_M / (P_M + P_{d,M}) = P_M / P_e$

Verlustgruppen bei PM-Synchron- und Käfigläufer-Asynchronmaschinen

PM-Synchron-Maschine	Käfigläufer-Asynchron-Maschine	
Stator-Stromwärmeverluste	Stator-Stromwärmeverluste	
Ummagnetisierungsverluste	Ummagnetisierungsverluste	
Verluste in den Magneten und Läufer	Rotor-Stromwärmeverluste	
	Zusatzverluste bei Sinusstrombetrieb	
Ventilations- u. Lagerreibungsverluste	Ventilations- u. Lagerreibungsverluste	
WR-Zusatzverluste	WR-Zusatzverluste	

<u>Beispiel:</u> Wirkungsgrad des Antriebsstranges – E-Motor + WR + Getriebe, *Brusa*

<u>Beispiel:</u> Wirkungsgrad des Antriebsstranges – E-Motor + WR + Getriebe, *Brusa*

- Gerastertes Wirkungsgrad-Kennfeld
- Unterteilung in 10 Nm und 10 1/s Abstände

Beispiel: PM-Synchronmotor Wirkungsgrade

Gemessene Betriebsparameter eines 6-poligen PM-Synchron-Fahrmotors im Dauerbetrieb bei a) 132V , b) 160 V Zwischenkreisspannung = Batteriespannung

		a)	b)
Speed (1/min)	п	2200	9000
Motor output power (kW)	P _M	26	15
Battery voltage (V)	$U_{ m B}$	132	160
Battery current (A)	I _B	227.5	119
Shaft torque (Nm)	М	113	16
Motor fundam. voltage (V)	$U_{\rm s1}~({\rm rms})$	52	68.5
Motor fundam. current (A)	$I_{\rm s1}~({\rm rms})$	213	164
Power factor	$\cos \varphi_{\rm s}$	0.87	0.52
Motor ohmic losses (W)	P _{Cu}	2180	1260
Winding temperature (°C)	$artheta_{Cu}$	148	142
Motor efficiency (%)	$\eta_{ m M}$	90.2	85.9
System efficiency (%)	$\eta_{ m sys}$	86.6	78.9

Quelle: Siemens AG

<u>Beispiel:</u> PM-Synchron- und Käfigläufer-Asynchronmaschinen (*Daimler*)

TECHNISCHE UNIVERSITÄT DARMSTADT

Technische Daten Elektrische Maschinen

	PSM	ASM
Bemessungsleistung P _N	20,5 kW	15 kW
Maximalleistung P _{max}	42 kW	35 kW
Nenndrehzahl n _N	1500 min ⁻¹	2765 min ⁻¹
Maximaldrehzahl n _{max}	6000 min ⁻¹	12500 min ⁻¹
Nenn-Drehmoment M _N	130 Nm	52 Nm
Maximal-Drehmoment M _{max}	270 Nm	120 Nm
Außendurchmesser d _{s,a}	286 mm	150 mm
Eisenlänge I _{fe}	95 mm	180 mm
Kühlmitteldurchfluss	8 l/min	8 l/min
Kühlmittel-Vorlauftemperatur	85 °C	85 °C
Wärmeklasse	Н	Н

PM-Synchronmaschine

Käfigläufer-Asynchronmaschine

Quelle: M. Ade & Daimler

Gemessener Wirkungsgrad PM-Synchronmaschine

Gemessener Wirkungsgrad Asynchronmaschine

Thermische Modellierung der E-Maschinen: a) Stator

Thermische Modellierung der E-Maschinen: a) Rotor

Erwärmung der PM-Synchron- und Käfigläufer-Asynchronmaschinen

 Vergleich Rechnung – Messung (Prüfstand) im Fahrspiel: konstante Drehzahl, veränderliche Belastung

Quelle:

M. Ade

PM-Synchronmotor

Käfigläufer-Asynchronmotor

Modellierung Wechselrichter

- Verkettete PWM-Ständerspannung U_{LL}
- Grundschwingung U_{LL1} mit f_s
- Gleichrichtung ist im Wesentlichen die Batteriespannung U_B.

- *I*_B: Batteriestrom
- *i*_d: Zwischenkreisstrom
- $i_{\rm C}$: Kondensatorstrom
- C: Stützkondensator
- Zwischenkreisstrom i_d
- Wechselanteil mit Schaltfrequenz f_T der Transistoren als Kondensatorstrom i_C
- Gleichanteil ist der Batteriestrom I_B

Verkettete WR-Ausgangsspannung: *m* = 0.5

Verkettete WR-Ausgangsspannung: *m* = 1.0

Pulsweitenmodulierte Ausgangsspannung

Fourier-Spektrum der *U*-Oberschwingungen

Blockspannungsbetrieb: Übermodulation $m = \infty$

Abschätzung max. WR-Ausgangsspannung

Maximale WR-Grundschwingungs-Ausgangsspannung bei a) Blockspannungsbetrieb:

Verketteter Spannungsscheitelwert:

$$\hat{U}_{LL1} = \frac{4}{\pi} \cdot \sin\left(\frac{2}{3} \cdot \frac{\pi}{2}\right) \cdot U_d = \frac{2\sqrt{3}}{\pi} \cdot U_d$$

Strangspannung, Effektivwert: $U_{s1} = \hat{U}_{LL1} / (\sqrt{2} \cdot \sqrt{3}) = \frac{\sqrt{2}}{\pi} \cdot U_d = 0.45 \cdot U_d$

b) Bei der linearen Aussteuergrenze m = 1:

$$U_{s1} = \frac{1}{2\sqrt{2}} \cdot U_d = 0.354 \cdot U_d$$

 $\hat{U}_{LL1} = \frac{\sqrt{3}}{2} \cdot U_d$

Batteriespannung $U_{\rm B}$ = $U_{\rm d}$ = 480 V:

a)
$$\hat{U}_{LL1} = 529$$
V $U_{s1} = 216$ V
b) $\hat{U}_{LL1} = 415$ V $U_{s1} = 170$ V

Modellierung Wechselrichter

- I_{s1} : Grundschwingung des Ständerstrangstroms
- U_{s1} : Grundschwingung der Ständerstrangspannung $U_{s1} = U_{LL1} / \sqrt{3}$
- φ_{s1} : Phasenwinkel zwischen I_{s1} und U_{s1}
- P_{d,inv}: Wechselrichterverluste
- $P_{\rm B}$: Batterieleistung

Leistungsbilanz:
$$P_B = 3U_{s1}I_{s1}\cos\varphi_{s1} + P_{d,inv}$$

Wechselrichterverluste:

-Durchlassverluste P_{inv,D}

-Schaltverluste P_{inv,S}

-Basisversorgung $P_{inv,0}$ = ca. 50 W

 $P_{\rm d,inv}$

Modellierung Wechselrichter

Abschalten der IGBT

<u>Beispiel:</u> 6x IGBT u. Diode FS200 R06KE3, Fa. Infineon

Sperrspannung:

U_{CE,sperr} = 600 V, Batteriespannung sollte dabei 500 V nicht übersteigen IGBT: Insulated Gate Bipolar Transistor = Schalttransistor D: Freilaufdiode (antiparallel): Führt den Strom nach

Beispiel: IGBT-Modul

FS200 R06KE3, Fa. Infineon

IGBT:

Kollektordauer-/Spitzenstrom: $I_{C,N} = 200 \text{ A}$, $I_{C,pk} = 400 \text{ A} (1 \text{ ms})$, $U_{CE,N} = 300 \text{ V}$ Dauersperrschichttemperatur 125°C: $U_{CE,sat} = 1.6 \text{ V}$ bei 200 A Durchlassspannung $U_{CE0} = 0.8 \text{ V}$, Durchlasswiderstand $R_{TD} = 4 \text{ m}\Omega$ Ein-/Ausschaltverluste bei $U_{CE,N}$, $I_{C,N}$: 1.7 mJ/6.7 mJ je Schaltvorgang

Freilaufdiode:

Dauer-/Spitzenstrom: $I_{\rm F,N} = 200$ A, $I_{\rm F,pk}$ 400 A (1 ms), $U_{\rm F,N} = 300$ V Dauersperrschichttemperatur 125°C: Durchlassspannung $U_{\rm F0} = 0.8$ V, Durchlasswiderstand $R_{\rm FD} = 2.5$ m Ω Abschaltverluste bei $U_{\rm F,N}$, $I_{\rm F,N}$: 5.2 mJ je Schaltvorgang

Beispiel: IGBT-Modul

FS200 R06KE3, Fa. Infineon

Durchlass-Kennlinie

Schaltverluste (t_{on} = 40 ns, t_{off} = 70 ns)

Freilaufdiode (Wechselrichter)

FS200 R06KE3, Fa. Infineon

Verlustabschätzung Wechselrichter

für Aussteuerungen $0 \le m \le 1$

-Durchlassverluste je IGBT:

$$P_{T,D} = U_{CE0}\hat{I}_s \cdot \left(\frac{1}{2\pi} + \frac{m \cdot \cos\varphi_s}{8}\right) + R_{TD}\hat{I}_s^2 \cdot \left(\frac{1}{8} + \frac{m \cdot \cos\varphi_s}{3\pi}\right)$$

-Schaltverluste je IGBT:

$$P_{T,S} = \frac{f_T}{\pi} \cdot \frac{\hat{I}_s}{I_{C,N}} \cdot \frac{U_d}{U_{CE,N}} \cdot \left(E_{on} + E_{off}\right)$$

-Durchlassverluste je Diode:

$$P_{D,D} = U_{F0}\hat{I}_s \cdot \left(\frac{1}{2\pi} - \frac{m \cdot \cos\varphi_s}{8}\right) + R_{FD}\hat{I}_s^2 \cdot \left(\frac{1}{8} - \frac{m \cdot \cos\varphi_s}{3\pi}\right)$$

-Abschaltverluste je Diode:

$$P_{D,S} = \frac{f_T}{\pi} \cdot \left(0.55 + 0.45 \cdot \frac{\hat{I}_s}{I_{F,N}} \right) \cdot \frac{U_d}{U_{F,N}} \cdot E_{rec}$$

Höhere Aussteuerung *m*:

IGBTs leiten mehr und Dioden weniger

-Durchlass- und Schaltverluste bei 6 IGBTs und Dioden: IGBT-Verluste nehmen zu!

$$P_{inv,S+D} = 6 \cdot \left(P_{T,D} + P_{T,S} + P_{D,D} + P_{D,S} \right)$$

Beispiel: Verluste Wechselrichter

m = 1, $\cos \varphi_{s} = 0.8$, $U_{d} = 480$ V, $f_{T} = 12$ kHz, $I_{s1} = 100$ A, $U_{s1} = 170$ V

Ausgangs-Grundschwingungsleistung: $P_e = 3U_{s1}I_{s1}\cos\varphi_{s1} = 40.8$ kW

Verlustkomponente	Verlustleistung [W]	
Transistor-Durchlassverluste	38.8 W	
Transistor-Schaltverluste	36.3 W	Je Paar
Dioden-Durchlassverluste	8.7 W	
Dioden-Schaltverluste	27.6 W	
Summe pro Transistor-Dioden-Paar	111.4 W	-
Summe über alle 6 Paare	668.4 W	
Wirkungsgrad [%]	98.27	

Umrichterwirkungsgrad: $\eta_{inv} = P_e / (P_e + P_{d,inv})$

Wechselrichter – Erwärmung

Modellierung

Kupfer

- RC-Netzwerk (R: Wärmewiderstand, C: Wärmekapazität)
 - \rightarrow Dynamische Berechnung Temperaturen
- 6-Körper-Modell
- Analytische Berechnung R, C anhand Aufbau-Geometrie
- Keine thermische Kopplung zu benachbarten Leistungs-Halbleitern

Thermisches Ersatzschaltbild IGBT

Kühl-

Quelle:

M.Ade

Beispiel: Wechselrichter Brusa

- Brusa DMC524 Drehstrom-Umrichter für automobile Anwendungen
 - 480 V Zwischenkreis-Gleichspannung
 - 600 V IGBTs
 - 80kW Dauerleistung
- Modell zur Berechnung der Schalt- und Durchlassverluste f
 ür Dioden und Transistoren
- Für Simulation: z. B.
 Bordnetz-Leistung =
 = 150 W konstante Leistung

Beispiel: Wechselrichter Brusa

Elektrische Eigenschaften		
Minimale Versorgungsspannung für vollen Ausgangsstrom [V]	200	
Maximale Versorgungsspannung im Betrieb [V]	480	
Überspannungsabschaltung [V]	500	
Maximall zulässige Überspannung [V]	520	
Dauerstrom, effektiv [A]	225	
Repetitiver Maximalstrom, effektiv, 30s 100%, 90s 50% [A]	300	
Dauerleistung [kW]	80	
Maximale Leistung [kW]	106	
PWM Frequenz (symmetrische Modulation) [kHz]	24	
Mechanische Eigenschaften		
Höhe [mm]	88	
Breite [mm]	240	
Länge [mm]	360	
Volumen [cm ²]	7600	
Gewicht (ohne Kühlwasser) [kg]	9.5	
Umgebungstemperatur für Betrieb [°C]	-40+85	

Quelle:

Brusa

Beispiel: Wechselrichter – Conti Temic

Technische Daten IGBT-WR

Maximalstrom I _{max}	250 A
Zwischenkreisspannung U _{DC}	110 - 370 V
Schaltfrequenz f _{Schalt}	8 kHz
Masse m _{WR}	10 kg
Kühlmitteldurchfluss V	8 l/min
Kühlmittel-Vorlauftemperatur \mathcal{P}_{VL}	85 °C
Zwischenkreiskondensator C _{ZK}	2 mF
Zwischenkreiswiderstand R _{ZK}	1 mΩ

Quelle:

Conti Temic

Verlustgruppen

IGBT	Diode
X	Х
(X)	(X)
X	(X)
Х	Х
Х	X
	IGBT X (X) X X

Bordnetzenergiebedarf

Bordnetzverbrauch wird z. B. dem Wechselrichter als zusätzlicher Verlustwert zugerechnet

- Nebenaggregate und elektrische Verbraucher: elektrisch versorgt
 - Nebenaggregate (Pumpen ...): mittlere Leistungsaufnahme, Kennlinien
 - Elektrische Verbraucher (Beleuchtung ...): mittlere Leistungsaufnahme

Bordnetzenergiebedarf

(wird dem Wechselrichter als zusätzlicher Verlustwert

TECHNISCHE UNIVERSITÄT DARMSTADT

zugerechnet)

Komponente	Leistungsbedarf [W]	
Steuergeräte	60	Mittlerer Bedarf:
Abblendlicht	90	(Tag/Nacht)
Kennzeichen- u. Schlussleuchte	25	(Warm/kalt)
Instrumentenbeleuchtung	20	(Regen/Trocken)
Innenraumgebläse	50	
Elektr. Lenkkraftunterstützung	25	Im Minimum 150 V
Summe	270	

Weitere E-Verbraucher:

Scheibenwischermotor, Klimakompressor für Klimaanlage, Radio + CD-Player, Navigation, beheizbare Scheiben und Außenspiegel, elektrische verstellbares Fahrwerk (Dämpfer), elektrische Heizung

12-V-Versorgung:

Aus der Batterie (z. B. 400 V DC) über DC-DC-Wandler auf 12 V DC heruntergesetzt

Batterievarianten

- Bleibatterie (PB-Säure)
- Verschlossene Bleibatterie (VRLA, Valve-Regulated Lead Acid)
- Nickel-Cadmium (NiCd)
- Nickel-Metallhydrid (NiMH)
- Lithium-Ionen (Li-Ion)
- Lithium-Polymer (LiPoly)

Unterschiede hinsichtlich Energie- und Leistungsdichte, Kosten, Lebensdauer, Umweltverträglichkeit, Zyklenfestigkeit ...

Batterievarianten: Ragone-Diagramm

Batterievarianten: Entwicklungstendenzen: Energie- & Leistungsdichte

Blei-Gel-/Vliesbatterien

- Designation for 'maintenance-free lead-acid batteries'
- Not really "sealed", but vented for overpressure
- 2 types: Absorbed Glass Mat (AGM) or Gel battery
- Use less electrolyte, less space than flooded designs
- High-rate power capacity (short duration)
- Cost-effective, deep discharge, used in UPS systems
- 3-5 year life in heavy-duty vehicle service

Typical VRLA Batteries

VRLA Vehicle Battery Pack String

Can be combined with UltraCaps for greater power cycling capacity

Quelle:

Parker Hannifin

Traditional choice for Hybrid Electric Transit Vehicle Designs

technische UNIVERSITÄT DARMSTADT

Low Cost, rugged and field-proven

Beispiel: Ni-Metall-Hydrid-Batterie

Quelle:

Toyota,

Ovonics

Technische Daten

Batterieparameter	Daten
Anzahl in Serie geschalteter Zellen	n _{Zelle} = 228
min./max. Zellenspannung	$U_{Zelle,min/Max}$ = 0,9 V / 1,6 V
min./max. Batterie- Leerlaufspannung	$U_{Batt,min/max}$ = 273 V / 330 V
Batterie-Nennkapazität	Q _{Batt.N} = 6,5 Ah
Anzahl paralleler Batteriezweige	a _{Batt} = 1
Innenwiderstand $R_{i,Batt}$ = f(SOC)	<i>R_{i.Batt}</i> = 0.85 … 1.2 Ω

NiMH-Batterie *Toyota Prius II*

Lithium-Ionen (Li-Ionen) Batterien

- Compact, light weight, highest power density
- Safety issues with older tech: cell phone/laptop types
- New nano-titanate cells handle 20,000 recharging cycles
- Fast charge up to 80% in one minute
- Long life claims 10+ years;

High power, mid-energy density

Li-lon nano-titanate battery

VanoSafe

• New technology - cost is 4-to-5 x VRLA cost, for same energy

167-088

11 Ah

"flat" wound cell

113

• Price will decrease as technology matures

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 76

2.3 V

High energy, mid-power cycling

Li-Ion nano-iron phosphate battery

Parker Hannifin

Daten von Li-Ionen-Batterien

Eigenschaft	Lithium- Ionen	Lithium- Polymer	Kokam
Leitfähigkeit (20 °C) [mS/cm]	2 – 5	0.05 – 0.5	0.05 – 0.5
Leerlaufspannung [V]	4.2	4.2	4.2
Nennspannung [V]	3.7	3.7	3.7
Entladeschlussspannung [V]	2.5	2.7	2.7
Energiedichte (Gewicht) [Wh/kg]	90 – 160	130 – 144	136
Energiedichte (Volumen) [Wh/l]	200 – 300	230 – 410	276
Leistungsdichte [W/kg]		300 – 1500	2700
Selbstentladung bei 20 °C [%/Monat]	5 – 10	2 – 8	2 – 8
Mögliche Zyklen	500 – 1200	500 – 1000	500 – 1000
Lagerfähigkeit [Jahre]	5 – 10	5 – 10	5 – 10

<u>Beispiel:</u> Lithium-Polymer-Zellen Kokam SLPB 98188216

	1 Zelle	116er-Pack
Nennspannung [V]	3.7	429.2
Nennladungskapazität [Ah]	30	30
Maximaler Ladestrom [A]	30	30
Maximale Entladestrom [A]	600	600
Abschaltspannung [V]	2.7	313
Gewicht [kg]	~0,82	~95

Quelle:

Kokam

- 116er-Pack: 116 Zellen in Serie für hohe Zwischenkreisspannung
- Beschränkung der Rekuperationsleistung auf maximal 14,6 kW
- Gewicht wird durch Packaging, Kühlung, Sensoren und Steuergeräte erhöht

Li-Ionen-Batterien: Entladecharakteristik

Entladerate von 1,0C entspricht 30 A

Li-Ionen-Batterie *Kokam SLPB* 98188216: Entladecharakteristik

Zyklenfestigkeit von Pb-Säure und NiMH-Batterien als Funktion der Entladetiefe △SOC

Quelle:

M. Duvall; Advanced batteries, Palo Alto, Cal., USA

Modellierung Batterie

Entladen: $I_{\rm B} > 0$

Laden: $I_{\rm B} < 0$

Verbraucher-

Zählpfeil-System

 $U_{\rm B0}$: Leerlaufspannung

 $R_{\rm Bi:}$ Innenwiderstand

Q: Entnommene elektrische Ladungsmenge

 $t_{\rm B}$: Entladezeit für Q bei Strom I = konst.

 $W_{\rm B}$: Entnommene Energie

 $Q_{\rm N}$: Nennladungsmenge (Ampere-Stunden), oft auch mit C bezeichnet

 $y = 1-Q/Q_{N}$: Entladezustand (State of Charge SOC)

Beispiel:

Pb-Batterie: $U_{B0} = 144 \text{ V},$ $R_{\rm Bi} = 0.055$ Ohm, $Q_{\rm N} = 100$ Ah

Batteriestrom / bei entnommener Leistung P_B

$$U_B = U_{B0} - I_B \cdot R_{Bi}$$

$$P_B = (U_{B0} - I_B \cdot R_{Bi})I_B$$

Zu einer festen Leistung kann mit a) kleinem Strom und großer Spannung

Entladen: $P_B > 0$

Laden: $P_B < 0$

Verbraucher-Zählpfeil-System

I_{B.max}: max. zuläss. Batteriestrom

b) großem Strom und kleiner Spannung entladen/geladen werden (ungünstig).

a)
$$I_{B} = \frac{U_{B0}}{2R_{Bi}} - \sqrt{\left(\frac{U_{B0}}{2R_{Bi}}\right)^{2} - \frac{P_{B}}{R_{Bi}}} \le I_{B,\max}$$

b)
$$I_{B} = \frac{U_{B0}}{2R_{Bi}} + \sqrt{\left(\frac{U_{B0}}{2R_{Bi}}\right)^{2} - \frac{P_{B}}{R_{Bi}}} \le I_{B,\max}$$

Traktionsbatterie

Ersatzschaltung

- Entladung der Batterie und Ladung der Batterie ohne Gasungsreaktion (SOC ≤ 80%)
 Modellierung
- Für die Ladung der Batterie mit Gasungsreaktion (SOC > 80%)

- ESB-Parameter: Kennlinien
- $U_{0,Batt} = f(SOC)$
- *R*_{*i*,*Batt*} = f(SOC)

•
$$R_{Gas} = f(SOC)$$

SOC: Ah-Bilanzierung

Batterien für Hybrid- vs. E-Auto

Ni-Me-Hydrid-Batterie (Fa. Ovonics) für Hybridauto

- Batteriespannung (Leerlauf): 160 V
- 10.5 Ah
- Batterie-Innenwiderstand: bei -5°C: 0.05 Ohm, bei 40°C: 0.01 Ohm
- Batteriemaximalstrom: Für 10 s: 292 A; für 1 s: 365 A

Blei-Gel-Batterie für Elektroauto:

- Batteriespannung (Leerlauf): 144 V = 12 x 12 Volt-Zellen
- 100 Ah
- Batterie-Innenwiderstand: 0.055 Ohm
- Batteriemaximalstrom: 300 A

Im Hybridauto ist die erforderliche Speichermenge deutlich kleiner als beim E-Auto (Reichweite!), aber die Leistungsspitzen wegen des Rekuperierens beim Bremsen oder wegen der hohen Entnahme beim "Boosten" deutlich höher. Deshalb ist eine Schonung der Batterie mit zusätzlichen Supercap-Speicher empfohlen, da diese eine hohe Leistungsdichte aufweisen.

Batteriezellen im Vergleich

	Blei-Gel	Ni-Me-Hydrid	Li-Ionen
Zellspannung	2 V	1.2 V	3.5 V
Energiedichte	30 Wh/kg	80 Wh/kg	100 Wh/kg
Wirkungsgrad	70 85 %	85 %	90%
Betriebstemperatur	0 55°C	-20 55°C	-2060°C

Speicherkondensatoren im Vergleich

a) Physikalische Kondensatoren basieren auf der elektrischen Flussdichte D und dem elektrischen Feld E zwischen den elektronischen Ladungsmengen Q, die durch ein Dielektrikum getrennt sind. Bei der Ladung / Entladung kommt es nur zur Verschiebung von Leitungselektronen in den metallischen Elektroden, während im Dielektrikum nur die Ausrichtung der polaren Moleküle erfolgt, aber keine Masse bewegt wird. Entscheidend für die Speicherfähigkeit der Energie ist die Dielektrizitätskonstante des Dielektrikums.

b) Elektrochemische Kondensatoren:

Anhäufung von elektrischen Ladungen an der Phasengrenze in einer **elektrochemischen Doppelschicht**, die einen Kondensator bildet, der einen sehr geringen "Elektrodenabstand" *d* aufweist. Dadurch ergeben sich zwar sehr kleine Spannungen *U*, aber sehr hohe Kapazitäten *C*. Der Abstand *d* der Ladungstrennung liegt in der Größenordnung des Ionenradius.

Speicherkondensatoren im Vergleich

Aufbau eines

UltraCapacitors

		Physikalischer Kondensator	Ultra Cap	Batterie
Leistungs- dichte	W/kg	> 10000	5000	300
Energie- dichte	Wh/kg	0.1	4	40

Vergleich der Lade- und Entladekurven von Doppelschichtkondensator und Batterie

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

7. Feldorientierte Regelung (PM-Synchronmaschine)

PM-Synchronmotor – feldorientierter Betrieb

 $U_{\rm s}$ = $U_{\rm s1}$: Strangspannung (eff, Grundschwingung)

$$M_e = \frac{P_{\delta}}{\Omega_{syn}} = m \cdot p \cdot \frac{\Psi_p}{\sqrt{2}} \cdot I_s$$

- $M_{\rm e}$: el. Drehmoment $P_{\rm a}$: Innere Leistung
- $\Omega_{\rm syn}$: Synchrone Winkelge-schwindigkeit
- m = 3: Strangzahl
- p: Polpaarzahl
- Ψ_{p} : Flussverkettung (peak)
- $I_s = I_{s1}$: Ständerstrangstrom (eff)
- $U_{\rm p}$: Polradspannung (eff)
- Ständerstrom ist DIREKT proportional zum Drehmoment M_e
- Drehzahl ist proportional zur Ständerfrequenz $n = f_s / p$

PM-Synchronmotor – Betrieb bei vollem Fluss

$$M_e = \frac{P_{\delta}}{\Omega_{syn}} = m \cdot p \cdot \frac{\Psi_p}{\sqrt{2}} \cdot I_s = k_T I_s \quad k_T = m \cdot p \cdot \frac{\Psi_p}{\sqrt{2}} \quad \text{Dre}$$

Drehmomentkonstante: Nm/A

$$k_T = m \cdot p \cdot \frac{\Psi_p}{\sqrt{2}}$$

Feldorientierter Betrieb: PM-Synchron-Motor mit *I_q*-Einprägung:

- a) Thermisches Dauerdrehmoment: Nennmoment M_N bei n_N
- Stromwärmeverluste P_{Cu}
- Ummagnetisierungsverluste P_{Fe,s+r},
- Magnet- u. Reibungsverluste P_M, P_R
- b) Entmagnetisierungs-/Umrichterstromgrenze:
- Ständerfeld wirkt auf Magnete: Umrichterstromgrenze muss unterhalb der Entmagnetisierstromgrenze liegen.
- c) Kurzzeitbetrieb:
- Maximalmoment bei Umrichterstromgrenze
- Motor kurzzeitig betrieben, Ausnützen der thermischen Zeitkonstante des Motors.
- *d)* Maximale Betriebsdrehzahl: $n_{max} = n_{sch}/1.25$ (VDE Schleuderdrehzahl 2 min)
- e) Spannungsgrenze: Maximale Umrichterausgangsspannung.

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

8. Feldschwächung (PM-Synchronmaschine)

Feldschwächung bei PM-Synchronmaschinen

TECHNISCHE UNIVERSITÄT DARMSTADT

Grunddrehzahlbereich Feldschwächbereich

- Ab der Nenndrehzahl n_N wird die Spannungsgrenze $U_{s,max}$ erreicht.
- Durch Einprägen eines negativen *d*-Stroms wird in der Ständerwicklung eine Gegenspannung zu U_p induziert, so dass U_s konstant bleibt.
- Der *d*-Strom bildet mit dem Läuferfluss kein Drehmoment!
- Bei konstantem Gesamtstrom muss
- n wegen des erforderlichen *d*-Stroms der *q*-Strom verringert werden, so dass das Moment *M* kleiner wird! ("Feldschwächbereich")

Statt $n_{\text{max,alt}}$ (bei $U_{\text{s}} = U_{\text{p}}$) wird ein höheres n_{max} erreicht, aber bei verringertem Moment, das nicht mehr zu I_{s} proportional ist.

Bedingung für gute Feldschwächbarkeit

	Voltage	Current i_s	<i>d</i> -axis i_{sd}	q -axis i_{sq}	Power	Speed <i>n</i>	$\cos \varphi$
	\mathcal{U}_{S}						
a)	0.8	1.0	0	1.0	$P_{\rm N}$	n _N	0.89 ind
b)	1.0	2.0	0	2.0	$2P_{\rm N}$	n _N	0.7 ind
c)	1.0	1.5	-0.8	1.27	$2P_{\rm N}$	1.7 <i>n</i> _N	0.98 ind
d)	1.0	1.7	-1.6	0.5	$2P_{\rm N}$	$4n_{\rm N}$	0.89 cap

Hoher Feldschwächbereich: $U_p >> U_{s,max}$, wir vernachlässigen $U_{s,max}$ und R_s . $I_{s,d} \cong U_p / X_s = \Psi_p / L_s = \Psi_p / L_d$

Der erforderliche Feldschwächstrom $-I_d$ ist in etwa der generatorische Kurzschlussstrom. Dieser muss kleiner als die Umrichterstromgrenze sein, um den Motor unbegrenzt feldschwächen zu können!

$$I_{s,d,\max} < I_{s,\max}$$

Vergleich von gut (A) und schlecht (B) feldschwächbarem **PM-Synchronmotor**

Beispiel: PM-Synchronmotor für E-Auto-Antrieb

a) Drehmoment-Strom-Kurve bei kleiner Drehzahl (voller Fluss)b) Gemessene Drehmoment-Drehzahl-Grenzkennlinie bei 132V Zwischen-

kreisspannung = Batteriespannung,

Quelle:

$$M_{pk} = 156Nm, P_{pk} = 35kW, I_{s,lim} = 315A$$

Siemens AG

$$(I_{s,lim} = I_{s,max}: Stromgrenze)$$

<u>Beispiel:</u> PM-Synchronmotor + Wechselrichter: Wirkungsgradfeld

Gemessene Motorabgabeleistung und Systemwirkungsgrad (PM-Synchronmotor + Wechselrichter) bei 190V Zwischenkreisspannung = Batteriespannung

Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

9. Wechselwirkungsmodell zwischen den elektrische Komponenten

Antriebsvarianten für ZEV Wechselwirkungsmodell

• Wechselwirkung im Simulations-Modell (z. B. in *Matlab Simulink*)

Parameter für und im Antriebsstrang

- Fahrzyklusdaten
- Fahrzeugdaten: Masse, c_w-Wert …
- Batteriedaten
- Wechselrichter: Elektrische Daten Leistungshalbleiter, Geometriedaten und Stoffwerte
- E-Maschine: ESB- u. Geometriedaten, Stoffwerte
- Aufnahmeleistung Zusatzverbraucher (Nebenaggregate und elektrische Verbraucher)

<u>Beispiel:</u> Einfluss der Schaltfrequenz auf die Verluste

- 2-poliger Käfig-Asynchronmotor, 3 kW, 380 V Y; Umrichter 8.3 kVA, 400 V, Motor-Grundfrequenz $f_s = 50$ Hz, Schlupf s = 4.5%, 10 Nm.
- Motor & Umrichter-Wirkungsgrad η direkt gemessen (Input vs. Output) bei unterschiedlichen Schaltfrequenzen.

	Netzbetrieb	Umrichterbetrieb		
$f_{ m s}$ / Hz	50	50	50	50
$f_{ m T}$ / Hz	-	2 400	4 800	9 600
$f_{\rm p} = 2f_{\rm T} / \rm kHz$		4.8	9.6	19.2
η (Motor)	81.9 %	81.3 %	81.4 %	81.4 %
η (Umrichter)	-	96.9 %	96.8 %	95.9 %
η (gesamt)	81.9 %	78.8 %	78.8 %	78.1 %

Bei $f_P = 9.6$ kHz ist der Motor-Wirkungsgrad höher (seine Erwärmung niedriger). Der Gesamt-Wirkungsgrad ist derselbe wie bei 4.8 kHz. Bei 19.2 kHz ist die Motor-Stromwelligkeit sehr klein, aber die Schaltverluste im Umrichter steigen an!

Ersatzschaltbild für den Wechselrichter-Zwischenkreis und die Batterie

Berechneter Batterie- und Zwischenkreisstrom-/spannung

Einfluss des Zwischenkreiskondensators C_{ZK} auf die Batteriestromwelligkeit

 $C_{ZK} = 1 \text{ mF}$ 70 i_{Batt} / A 60 0,2 0,198 0,1984 0,1988 0,1992 0.1996 $C_{ZK} = 2 \text{ mF}$ 70 i_{Batt} / A 65 60 0,198 0.1984 0.1988 0.1992 0.1996 0,2 C_{ZK} = 4 mF 70 i_{Batt} / A 65 60 0,198 0,1984 0,1988 0,1992 0,1996 0,2

Berechneter Batteriestrom für unterschiedliche Zwischenkreiskapazitäten von C_{ZK} = 1, 2 und 4 mF.

Die Amplituden der Stromoberschwingungen sinken hyperbolisch mit der Größe der Zwischenkreiskapazität.

Quelle: M. Ade

Zeit t / s
Inhalt

TECHNISCHE UNIVERSITÄT DARMSTADT

10. Antriebs-Umsetzung im Fahrzeug

- Fahrwiderstände
 - Strömungswiderstand F₁
 - Steigungswiderstand F_S
 - Rollwiderstand F_{Roll}
 - Lagerreibung F_{Lg}
 - Beschleunigungswiderstand F_B
- Übertragbare Kraft F_a / Radschlupf s
- Leistungsanforderungen an den Fahrmotor

Modellierung des Fahrzeugs

A	Querspantfläche
$C_{\rm w}$	Strömungswiderstandsbeiwert
d _R	Raddurchmesser
т	Fahrzeugmasse
V	Fahrzeuggeschwindigkeit

- μ Kraftschlussbeiwert
- J_R | Radträgheitsmoment
- P_A | Fahrleistung
- $F_A \begin{vmatrix} Antriebskraft \\ Fabrzeu aschwe$
 - A Fahrzeugschwerpunkt

$$P_A = F_A \cdot v$$

Strömungswiderstand F₁

 $p_d = \rho_L v^2 / 2$

<u>Beispiel</u>: VW-Golf: $c_w A = 0.56 \text{ m}^2$, $c_w = 0.4$

Quelle: Weh, TU Braunschweig

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 111

Steigungswiderstand F_s

 $F_N = F_G \cdot \cos \alpha$

 $\tan \alpha = S / L$

Beispiel: Steigung Turracher Höhe (Kärnten, Österreich): $tan \alpha = 0.22 = 22\%$

Rad-Fahrbahn-Kontakt

Rollwiderstand *F*_{Roll} aller Räder

Momentengleichgewicht um AP:

$$F_{Roll} \cdot d'_R / 2 = z_R F_{G,R} \cdot b_R$$
$$d'_R < d_R$$

F _G	Normalkraft auf alle Räder		
b	Großer Halbmesser der Verformungsellipse		
g	Erdbeschleunigung		
n _R	Raddrehzahl		
AP	Aufstandspunkt		
α	Steigungswinkel der Fahrbahn		

$$F_{G} = m \cdot g \qquad F_{N} = F_{G} \cdot \cos \alpha$$
$$d'_{R} \approx d_{R} :$$
$$F_{Roll} = (2b / d_{R}) \cdot F_{N} = f_{R} \cdot F_{N}$$

Rollwiderstandsbeiwert $f_R = f_R(v)$ durch die Verformungsarbeit des Rades (Walkarbeit): hängt von Fahrzeuggeschwindigkeit und Radreifenbeschaffenheit ab

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 114

Rollwiderstandsbeiwert PKW

 $f_{R} = f_{R0} + f_{R1} \cdot (v/v_{0}) + f_{R4} \cdot (v/v_{0})^{4} \qquad v_{0} = 27.8 \text{ m/s} = 100 \text{ km/h}$ $f_{R0} = 0.009, f_{R1} = 0.0015, f_{R4} = 0.0012$

Einstufiges Getriebe

Einstufiges Untersetzungsgetriebe $v_{U,Gt} = d_M \pi n_M = d_R \pi n_R$ (Stirnradgetriebe) $i = n_M / n_P = d_P / d_M$ $i = n_M / n_R$: Übersetzungsverhältnis $F_{Gt} = 2M_{M} / d_{M} = 2(M_{R} + M_{V}) / d_{R}$ d_{M} JM $i \cdot \eta_{G} = M_{R} / M_{M} \quad M_{M} = M_{R} / (i \cdot \eta_{G})$ М_М Motor Drehzahlabhängiges Verlustmoment durch пм Ölzähigkeit ("Plansch"verluste): $M_{d0} = p_0 M_N$ d_R Belastungsabhängiges Verlustmoment durch Zahneingriff: $M_{d1} = p_1 M_N$ Rad n R $^{\rm M}$ R $m = Moment/Nennmoment = M/M_N$ $v = Drehzahl/Nenndrehzahl = n/n_N$ $\eta_G = \frac{P_{ab}}{P_{zu}} = \frac{M_{ab} 2\pi n_M}{M_{zu} 2\pi n_M} = \frac{M}{M + \nu \cdot M_{d0} + m \cdot M_{d1}} = \frac{m}{m + \nu \cdot p_0 + m \cdot p_1}$ <u>Beispiel:</u> $p_0 = 0.011$, $p_1 = 0.0043$, $\eta_{GN} = 0.9849$

Getriebewirkungsgrad

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 117

Fahrzeug-Beschleunigungskraft dv/dt

n_L

 M_{M}

Ję

Last

Rad

Fahrzeug:

Fahrzeug-Beschleunigung: dv/dt

Beschleunigung linear bewegter Massen: $F_B = m \cdot dv / dt$

Beschleunigung rotierender Massen (Räder, Getriebe, E-Motor): $M_B = J \cdot d\Omega / dt$ (Drehmoment *M* erforderlich)

Antrieb:

пм

E-Motor ~

Jм

Motor

Stirnradgetriebe

 d_{L}

Maximal zulässige Beschleunigungen ("Wohlfühlen"): $(dv/dt)_{max} = 2m/s^2 = 0.2g$

Drehmassenzuschlagsfaktor Δ

Äquivalente linear beschleunige Masse m': $m' = m \cdot (1 + \Delta)$

Typischer Wert für den Anteil der zu beschleunigenden rotierenden Massen an der kinetischen Energie: $\Delta = 0.2$

Beschleunigungskraft $F_{\rm B}$:

$$F_B = m' \cdot (dv \,/\, dt)$$

Lagerreibung *F*_{Lg}

Je Rad:
$$F_{Lg,R} = F_{G,R} \cdot k_{Lg}$$

Je Fahrzeug: $F_{Lg} = z_R F_{G,R} \cdot k_{Lg} = m \cdot g \cdot k_{Lg}$

<u>Beispiel:</u>

m = 1500 kg *F*_{Lg} = 73. 5 N

Je Rad: Lagerkraft *F*_{G,R}

```
Bremsende
Lagerreibungskraft F<sub>Lg,R</sub>
```


Raddrehzahl *n*_R

Beispiel: Kugellager

Reibungsbeiwert k_{Lg} = 0.005 als Schätzwert ! Je nach Lagerart, Schmierzustand, Alter, Lagerlast, Raddrehzahl variiert dieser Wert und kann nach genauen Formeln berechnet werden!

Erforderliche Antriebskraft F_A und Leistung P_A

1) Stationärbetrieb: dv/dt = 0: $F_{A,stat} = F_{Roll} + F_L + F_S + F_{Lg}$ 2) Instationärbetrieb: $dv/dt \neq 0$: $F_{A,inst} = m' \cdot (dv/dt) + F_{Roll} + F_L + F_S + F_{Lg}$ Beschleunigen: dv/dt > 0dv/dt < 0Bremsen: 3) Antriebsleistung: $P_A = F_A v$: stationär: $P_{A,stat} = F_{A,stat} v = (F_{Roll} + F_L + F_S + F_{Lg}) \cdot v$ $P_{A,stat} = \left[(f_R + \tan \alpha) \cdot F_N + F_{Lg} \right] \cdot v + c_w A \frac{\rho_L}{2} v^3$ Dominiert bei hoher Geschwindigkeit niedriger 4) Antriebsenergie im Fahrspiel (Zeitraum $t_2 - t_1$): $W_A = \int_{0}^{t_2} P_A(t) \cdot dt$

Beispiel: Antriebskraft F_A

<u>Daten:</u> $m = 1500 \text{ kg}, v = 80 \text{ km/h}, f_R = 0.01, c_w A = 0.56 \text{m}^2$

- a) Beschleunigung: $dv/dt = 1 \text{ m/s}^2$, $\Delta = 0.2$, Steigung 10%
- b) keine Beschleunigung: dv/dt = 0, keine Steigung

$$\begin{split} F_G = & 14700N, F_{Lg} = 73.5N, F_L = & 166N \\ \text{a)} \ F_N = & 14627N, F_{Roll} = & 146N, F_S = & 1463N, F_B = & 1800N \\ F_A = & F_B + F_S + F_{Roll} + F_L + F_{Lg} = & 3648N \\ \text{b)} \ F_N = & 14700N, F_{Roll} = & 147N, F_S = & 0, F_B = & 0 \\ F_A = & F_{Roll} + F_L + F_{Lg} = & 386.5N \end{split}$$

Übertragbare Kraft F_A / Radschlupf s

Kraftschlussbeiwert μ

Steigung tan α : $F_{N,R} = F_{G,R} \cdot \cos \alpha$

Maximal auf die Fahrbahn übertragbare Antriebskraft je Rad:

$$F_{A,R,\max} = \mu(s) \cdot F_{N,R}$$

μ: Kraftschlussbeiwert

Damit die Antriebsräder nicht durchdrehen ("Schleudern"): $F_{A,R} \leq F_{A,R,\max}$

$z_{R,A}$: Anzahl der angetriebenen Räder

Maximal auf die Fahrbahn übertragbare Antriebskraft: $F_{A,\max} = z_{R,A} \cdot F_{A,R,\max}$ Bedingung gegen Schleudern: $F_A \leq F_{A,\max}$

Schlupf zwischen Rad und Fahrbahn Simulation – Rad / Straße

Kraftschlussbeiwert vs. Schlupf

Kloss'sche Formel:

$$\frac{\mu}{\mu_{\max}} = \frac{2}{\frac{s}{s_b} + \frac{s_b}{s}}$$

Trockener Asphalt: $s_{\rm b} = 0.11, \ \mu_{\rm max} = 1.2$ $S_{\rm t} = 30, \ A_{\rm b} = 0.3, \ W = 10$

Empirische, genauere Formel:

$$\mu = \mu_{\max} \cdot \left(1 - e^{-S_t \cdot s}\right) - \frac{A_b \cdot e^{W \cdot s}}{100A_b + e^{W \cdot s} - 1} + 0.01 \qquad 0 \le s \le 1$$

S _t	Steigung der $\mu(s)$ -Kurve bei $s = 0$	(Wertebereich: 10 50)
A_{b}	Absenkung der $\mu(s)$ -Kurve bei $s = 1$	(Wertebereich: 0 … μ_{max})
W	Wendepunktwert	(Wertebereich: 10 100)

Kraftschlussbeiwert vs. Schlupf

Kraftschlussbeiwert µ und Radschlupf s

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 128

Schlupfverluste

- Zum gegebenem Fahrbahnzustand ergibt sich ein μ_{max} bei s_{b} .

- Zur erforderlichen Antriebskraft und Fahrzeugmasse bzw. Steigung ergibt sich ein erforderlicher Kraftschlussbeiwert μ . Bei symm. Schwerpunktlage und zwei Achsen:

$$F_{N,Achse} = m \cdot g \cdot \cos \alpha / 2$$
 1 angetriebene Achse: $\mu = F_A / F_{N,Achse}$

- Daraus wird der Radschlupf über die $\mu(s)$ -Kurve bestimmt oder aus der *Kloss* schen Funktion:

$$\frac{s}{s_b} = \frac{\mu_{\max}}{\mu} - \sqrt{\left(\frac{\mu_{\max}}{\mu}\right)^2} -$$

- Auf Grund des Radschlupfs tritt die Reibungsleistung als Schlupfleistung $P_{\rm sch}$ auf. Daher ist die Antriebsleistung um diese Schlupfverluste kleiner als die mechanische Leistung $P_{\rm m}$ an den Antriebsrädern.

$$P_{sch} = s \cdot P_m$$
 $P_A = (1-s) \cdot P_m$

Schlupfverluste = Reibungswärme = Schlupfleistung P_{sch} :

Beispiel: Schlupfverluste

<u>Daten:</u> $m = 1500 \text{ kg}, v = 80 \text{ km/h}, f_{R} = 0.01, c_{w}A = 0.56 \text{m}^2$

- a) Regennasser Asphalt: $\mu_{max} = 0.5$ bei $s_b = 0.11$, Beschleunigung: dv/dt = 1 m/s², $\Delta = 0.2$, Steigung 10%, $F_A = 3648$ N
- b) Trockener Asphalt: μ_{max} = 1.2 bei s_b = 0.11, keine Beschleunigung: dv/dt = 0 keine Steigung, F_A = 386.5 N

a)
$$F_{N,Achse}$$
 = 14641 N, μ = 3648/14641 = 0.249, s = 0.0292

 $P_{A} = F_{A}v = 81067 \text{ W}, P_{sch} = 2438 \text{ W} = 3\% \text{ v}. P_{A}$

b) $F_{\text{N,Achse}}$ = 14700 N, μ = 386.5/14700 = 0.0263, s = 0.011,

 $P_{A} = F_{A}v = 8589 \text{ W}, P_{sch} = 94 \text{ W} = 1.1\% \text{ von } P_{A}$

Fazit:

Die Schlupfverluste können bei normalen Fahrbetrieb im Bereich des Mikroschlupfs vernachlässigt werden !

Leistungsanforderung an den Fahrmotor

Raddrehmoment aus Antriebskraft: $F_A = M_R / (d_R / 2)$

Raddrehzahl aus Fahrgeschwindigkeit und Radschlupf:

$$n_R = \frac{v}{d_R \pi \cdot (1 - s)}$$

Motordrehmoment über Getriebe und dessen Verlustmoment: $M_M = M_R / (i \cdot \eta_G)$

Motordrehzahl über Getriebe: $n_M = n_R \cdot i$

Motorleistung: $P_M = 2\pi \cdot n_M \cdot M_M$

TECHNISCHE Inhalt UNIVERSITÄT DARMSTADT **11. Energiemanagement**

Energiemanagement

Das Energiemanagement generiert an der Schnittstelle zwischen den Triebstrangkomponenten und dem Fahrerwunsch die Sollwerte für die Antriebe.

Hybridbetrieb: Energiemanagement

- Aufgabe:
 - Generiert Sollwerte für Antriebe mit Blickpunkt auf ein gewünschtes Ziel
 - Allgemeine Gültigkeit
- Ziel: Minimierung des Kraftstoffverbrauchs
- Mittel: Ausnutzung der Hybridfunktionen
 - VKM-Start/Stopp
 - VKM-Lastpunktverschiebung
 - Elektrisches Fahren
 - Elektrisches Boosten
- Randbedingungen:
 - Begrenzung Startvorgänge VKM
 - Nachlaufzeit / Mindest-Einschaltdauer
 - SOC innerhalb Band SOC_{min} ... SOC_{max}
 - Maximalmoment rotierender Triebwerksteile (VKM, E-Maschine, Getriebe)
 - Maximalleistung statischer Antriebskomponenten (Batterie, WR)
 - Maximaltemperaturen der Aktivteile WR und E-Maschine

Beispiel: VKM-Lastpunktverschiebung

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 135

Beispiel: Serieller Hybrid

Ein-Punk-Betrieb:

- VKM arbeitet intermittierend im Verbrauchs-Best-Punk
- Leistungsumsatz in der Batterie ist hoch
- \Rightarrow Hohe Batterieverluste
- \Rightarrow starke Zyklenbeanspruchung

Trajektorienbetrieb:

- VKM-Leistung wird an den Fahrzeugbedarf angepasst
- Leistungsumsatz in der Batterie ist niedrig
- \Rightarrow Geringe Batterieverluste
- \Rightarrow Niedrige Zyklenbeanspruchung

Beispiel: Serieller Hybrid

Trajektorie für verbrauchsoptimalen Betrieb

-Der Verbrennungsmotor folgt dem Leistungsbedarf des Fahrzeugs näherungsweise auf der Trajektorie -Die Batterie speichert die von der VKM-Generator-Einheit überschüssig erzeugte Energie und versorgt damit den Traktionsmotor bei abgeschalteter VKM. - Als Folge der Anpassung von erzeugter zu verbrauchter Leistung sinkt der Energieumsatz der Batterie, so dass für Trajektorienbetrieb kleinere Energiespeicher ausreichen.

VKM-Lastpunktverschiebung - Batterieladung

UNIVERSITÄT DARMSTADT

-Die Batterie-Nutzleistung $P_{B,Nutz}$ ist die Lade- bzw. Entladeleistung abzüglich der Batterie-Verluste.

-Die Ladung der Batterie erfolgt (abgesehen vom regenerativen Bremsen) durch Lastpunktverschiebung der VKM unter Aufwendung von Kraftstoff.

- Beim Entladen der Batterie wird dieser Kraftstoffverbrauch in Antriebsleistung umgesetzt. Diese Ladungsmenge ist zu einem späteren Zeitpunkt durch die VKM wieder zu ersetzen.

- Die Belastung des Triebstrangs (resultierende Triebstrangverluste) durch die Batterieladung wird berücksichtigt.

-Entladen: *P*_{B,Nutz} zu Verlusten addiert, Laden: *P*_{B,Nutz} von Verlusten subtrahiert.

-Einfluss dieser Lastpunktverschiebung mit Faktor $k_{\text{Batt}} = 1, 2, \text{ oder 3 gewichtet}$: $k_{\text{Batt}} \cdot P_{\text{B,Nutz}}$ zu Verlusten addiert bzw. subtrahiert: Erlaubt Sensitivitätsanalyse bei der Simulation für minimale Gesamtverluste.

HEV: Energiemanagement

Optimierungsansatz

- Minimierung Triebstrangverluste: $P_{V,TS} = P_{V,VKM} + P_{V,EA} + P_{V,G} + P_{V,Batt}$
- Berücksichtigung Batterie-Nutzleistung: $P_{Batt,Nutz} \rightarrow +/-k_{Batt,Nutz}$

 \rightarrow Gesuchte Lösung: $P_{V,FZ} = P_{V,TS} + - k_{Batt} P_{Batt,Nutz} = min.$

- Umsetzung: Variation Drehmomentverteilung u. Getriebeübersetzung
- Variation k_{Batt} , $P_{E-Drive,max}$, ΔSOC

k _{Batt}	1	2	3	-
P _{E-Drive,max} / kW	10	15	20	-
Δ SOC / %	5	10	15	20

- Einfluss der Parameter k_{Batt} , $P_{E-Drive,max}$, ΔSOC
 - k_{Batt} : \rightarrow Nutzung Batterieenergie
 - $-k_{Batt}$ hoch \rightarrow Erschwert Batterie-Entladung, erleichtert Batterieladung
 - $\triangle SOC : \rightarrow Verfügbarkeit Batterie$
 - $-\Delta SOC \text{ groß} \rightarrow \text{Nach Erreichen } SOC_{min}$ ist Batterie aufzuladen. Dabei Freiheitsgrade Hybridantrieb eingeschränkt auch bei Stop & Go
 - $P_{E-Drive,max}$: \rightarrow Nutzung Batterieenergie
 - $-P_{E-Drive,max}$ hoch \rightarrow Batterie-Max.leistung hoch, Batteriewirkungsgrad niedrig

Batteriemanagementsystem

Ziele:

Erhöhung der Lebensdauer, Zuverlässigkeit, Wirtschaftlichkeit

Aufgabe: Bestimmung des Ladezustandes

Anforderungen:

- Zellen- bzw. Modulspannung innerhalb zulässiger Grenzen

- Steuerung des Lade- und Entladeprozess im vorgeschriebenen Rahmen, ggf. mit Ladungsausgleich

- Strombegrenzung als Tiefentladeschutz
- Batterietemperierung im Betriebsbereich
- Temperaturausgleich zwischen allen Modulen.

Speicherung von Betriebsdaten:

- Diagnosezwecke, - Regulierung von Gewährleistungsansprüchen

Messbaren Größen:

Batteriemodul-/zellenspannungen, Batteriestrom, Batterietemperaturen.

Berechnung: Erwärmung E-Maschinen Parallelhybrid a) PSM, b) ASM

Erwärmung E-Maschinen bei 5-maliger Wiederholung FTP-72-Zyklus

Berechnung: Erwärmung Wechselrichter

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 142

Beispiel: Elektroauto

Hybrid-Auto: a) <u>Beispiel:</u> Berechnete Verbräuche

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 143

Fahrzyklus NEFZ

Fahrzyklus: NEFZ: Neuer europäischer Fahrzyklus

Fahrzyklus FTP-72, FTP-75

Fahrzyklen FTP-72, FTP-75 (Federal Test Procedure)

Zykluseigenschaften beeinflussen das Einsparpotenzial des HEV

Zyklus	NEFZ	Japan-10-15- Mode	Highway- FET	FTP-72
Zyklusdauer	1180 s	660 s	765 s	1369 s
Zykluslänge	11007 m	4160 m	16447 m	11989 m
Mittlere Geschwindigkeit	33.6 km/h	22.7 km/h	77.4 km/h	31.67 km/h
Maximalgeschwindigkeit	120 km/h	70 km/h	96.4 km/h	91.2 km/h
Maximale Beschleunigung	1.04 m/s ²	0.8 m/s ²	1.44 m/s ²	1.5 m/s ²
Stillstandsanteil	23.7 %	31.2 %	0.5 %	17.6 %

Quelle:

M. Ade

Parallelhybrid

Beispiel: Fahrzeugdaten P-HEV1 Mercedes Benz (MB) E-Klasse 220 CDI VKM 2.2 | CDI Fahrzeug: fiktiv Zylinder 4 Elektrisch versorgte Nebenaggregate 300 Nm /105 kW Max. Zusatzverbraucherlast M_N/P_N Fahrzeugaufbau Getriebe Automatik 3,95 / 2,42 / 1,49 / Übersetzungen Achs-Gang 1 ... 5 1,00 / 0,83 Quelle: M. getriebe Schalt- Kupplung Ade Achsgetriebe 2.87 **MB E Klasse** Fahrzeug getriebe *c*_{₩∕}-Wert 0.27 V Energie-Κ Querspantfläche ~ 2,25 m² management Μ Reifen r = 0.299 m1640 ka Leermasse Wechsel-40 kg Batterie Batterie richter E-Maschine 60 kg 10 kğ WR DC/DC-Wandler 5 kg Bordnetzbatterie -10 ka VKM: Verbrennungskraftmaschine Leistungsfluss E-Antrieb Lichtmaschine -5ko EM: Elektrische Maschine Laden der Batterie Gesamtmasse 1740 ka Rekuperation → Mehrmasse ca. 100 kg ------ Antreiben

Parallelhybrid "Through the road"

Mercedes Benz (N	IB) B-Klasso		<u>Beispiel:</u> Fahrz	eugdaten P-HEV2
• Fabrzeug: fiktiv			VKM	1,7 CDI
• Eloktrisch vorea	• Fallizeug. Iikuv		Zylinder	4
• Max Zusatzvorh	ngle Nebenayyreya Srauchorlast		M_N/P_N	180 Nm / 67 kW
 Fahrzeugaufhau 	nauchenast		Getriebe	Automatik
- I amzeugauibau	Quelle: M.		Übersetzungen Gang 1 5	2,72 / 1,69 / 1,12 / 0,79 / 0,65
	Ade		Achsgetriebe	3,95
Achsgetriebe	Betteria		Fahrzeug	MB B Klasse
Schaltgetriebe	Batterie	ie- ment Wechsel- richter EM	<i>c</i> _₩ -Wert	0,3
	Energie- Wechsel-		Querspantfläche	~ 2,42 m ²
	nanagement richter		Reifen	<i>r</i> = 0,3205 m
Kupplung WKM: Verbrennungskraft EM: Elektrische Maschine	Straße maschine Leistungsfluss E-Ant Laden der Bat Rekuperation Antreiben	triebe EM trieb trieb	Leermasse Batterie E-Maschine WR DC/DC-Wandler Bordnetzbatterie Lichtmaschine Gesamtmasse → Mehrmasse	1435 kg 40 kg 42 kg 8,5 kg -10 kg -5kg 1515 kg ca. 80 kg
Institut für Elektrische Energiewand	lung Prof. DrIng. habil. Dr. h.c. A. E	8 Binder Seite 14	8	

Beispiel: Berechnung Kraftstoffverbrauch HEV

Ergebnisse P-HEV1

Zyklus	k _{Batt}	P_{E-} Drive,max	∆ SOC	Min. Verbrauch I/(100 km)		Kraftstoff- Einsparung
		kW	%	P- HEV1	VKM- Kfz	
NEFZ	1	10	5	8,1	10,2	20 %
FTP-72	2	10	10	8,4	10,6	21 %
Japan-10-15	2	10	10	9,6	12,9	25 %
Highway-FET	1	15	5	6,2	6,5	5 %

Ergebnisse P-HEV2

Quelle: M. Ade

Zyklus	k _{Batt}	P_{E-} Drive,max	∆SOC	Min. Verbrauch I/(100 km)		Kraftstoff- Einsparung
		kW	%	P- HEV2	VKM- Kfz	
NEFZ	1	15	5	8,1	9,3	13 %
FTP-72	1	10	5	8,5	9,8	13 %
Japan-10-15	1	10	5	9,5	11,7	19 %
Highway-FET	1	10	5	6,1	6,1	0 %

Beispiel: Berechnung Kraftstoffverbrauch HEV Zusammenfassung der Simulationsergebnisse

- Ergebnisse hängen vom Fahrzyklus und dem Aufbau des HEV ab
- *k_{Batt}*: Batterieladung nicht / nur geringfügig künstlich erzwingen
- P_{E-Drive,max}: Elektrisches Anfahren auf kleine Leistungen begrenzen
- \triangle SOC: Batterienutzung auf kleines Fenster \triangle SOC begrenzen
 - \rightarrow kumulierte Batteriekapazität hoch

Beispiel: Elektroauto

E-Auto: b) <u>Beispiel:</u> Konstante Geschwindigkeit -Reichweitenberechnung

Beispiel: Reichweitenberechnung bei *v* = konst.

Angaben:

Keine Steigung: $\alpha = 0$, v = konst. = 120 km/h, m = 1437 kg, $c_w A = 0.56 \text{ m}^2$, $d_R = 0.6 \text{ m}$ $f_R = 0.01$, $\eta_G = 0.9$, i = 8.02, Q = 100 Ah, $U_{B0} = 192 \text{ V}$, $R_{Bi} = 0.055 \Omega$ (Pb-Gel) SOC: Beginn: 100%, Ende: 25%, PM-Synchronmotor 6-polig und IGBT-Wechselrichter (Wirkungsgradkennlinienfeld bei $U_R = 190 \text{ V}$), Bordnetz: 400 W

Lösung:

- 1) Fahrwiderstände: $F_{Lg} \cong 0$, $F_{Roll} = 141$ N, $F_{L} = 375$ N, $F_{A} = 515$ N, $P_{A} = 17.17$ kW
- 2) Raddrehzahl und Getriebe: $n_{\rm R}$ = 1061/min, $n_{\rm M}$ = 8509/min, $P_{\rm M}$ = 19.078 kW
- 3) Motordaten: *M*_M = 21.4 Nm, Antriebssystemwirkungsgrad: 80% (Umrichter: 93%, PM-Syn.motor 86%)
- 4) Batterieleistung: 19.078/0.8 + 400 = 24248 W = $P_{\rm B}$, $I_B = \frac{U_{B0}}{2R_{Bi}} \sqrt{\left(\frac{U_{B0}}{2R_{Bi}}\right)^2 \frac{P_B}{R_{Bi}}} = 131.2$ A
- 5) Reichweite: $y = 1 SOC_{End} = 0.75$, $t = Q \cdot y/I_B = 2058 \text{ s} = 34.3 \text{ min}$, $s = v \cdot t = 68.6 \text{ km}$

Beispiel: PM-Synchronantrieb

Drehmoment-Querstrom-Kurve

Leistung + Wirkungsgrad (Motor+WR)

Beispiel: Elektroauto

E-Auto: c) <u>Beispiel:</u> Geschwindigkeitszyklen – Reichweitenberechnung und Beschleunigungsvermögen

<u>Beispiel:</u> Angaben zu einem fiktiven E-Auto – im Zyklus und bei max. Beschleunigung

Angaben:

m = 900 kg (Leer) $c_w A = 0.5 \text{ m}^2$, $d_R = 0.623 \text{ m}$, $\Delta = 0.2 \text{ Drehmassenzuschlag}$, $f_R = 0.008$, η_G lt. Kennlinienfeld, *i* = 8, *Q* = 30 Ah, $U_{B0} = 480 \text{ V}$, $R_{Bi} = 0.0696 \Omega$ (Lilonen, *Fa. Kokam*), PM-Synchronmotor 6-polig (*Fa. Brusa*, 6.17.12): 4500/min, 85 Nm, max. 11000/min, IGBT-Wechselrichter: *Fa. Brusa*, DMC524, 80 kW (106 kW kurzz.), 600 V Sperrspannung, Bordnetz: 150 W

Das Fahrzeug ist für v_{max} = 150 km/h ausgelegt: Motordrehzahl = 10200/min.

Beispiel: Fahrwiderstände

Geschwindigkeit [km/h]	Fahrwiderstand [N]		
0	0		
25	85.2		
50	128.5		
75	201.5		
100	302		
125	432		
138	513		
150	591		

α = 0

<u>Beispiel:</u> E-Auto Ergebnisse im Motorkennfeld

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 157

<u>Beispiel:</u> E-Auto: PM-Motor und Fahrzeug-Belastungsdaten

Punkt in Kennlinie	Geschwindigkeit [m/s] / [km/h]	/ _d [A]	/ _q [A]
1 (<i>n</i> _N / <i>M</i> _d)	13.8 / 49.7	0	102
2 (<i>n</i> _N / <i>M</i> _{S2})	13.62 / 49	0	139
3 (<i>n</i> _{max} / <i>M</i> _d)	41.55 / 149.6	84	7
4 (n _{max} / M _{S2})	41.05 / 147.78	109.5	52.5

Drehzahl	Thermisches Dauermoment [Nm]	Maximales Kurzzeit- Drehmoment (S2-5min Betrieb)		
n _N = 58.1 /s	115 / Punkt 1	151 / Punkt 2		
n _{max} = 170.1 /s	8 / Punkt 3	60 / Punkt 4		

Quelle: P. Morrison

Beispiel: E-Auto (Brusa-Antrieb) Wirkungsgrad-Kennfeld gerechnet

Beispiel: Verluste in vier Betriebspunkten

Durch die hohe Beschleunigungskraft treten auch Schlupfverluste auf!

Verluste [W]	Punkt 1	Punkt 2	Punkt 3	Punkt 4
	$(n_{\rm N} / M_{\rm d})$	(n _N / M _{S2})	$(n_{ m max} / M_{ m d})$	(n _{max} / M _{S2})
Rad-Schlupf-Verluste	1237	2280	16	936
Getriebe	190	247	127	365
Leistungselektronik	794	916	736	985
Bordnetz	150	150	150	150
Motor	1944	3245	3700	5190
Batterie	623	1135	51	1605
Summe der Verluste	4838	7973	4780	9231
Vortriebsleistung [kW]	40.5	52.5	8.4	62.8
Wirkungsgrade [%]		-		
Gesamtfahrzeug	89.3	86.8	63.7	87.2
Motor	95.6	94.4	70.0	92.5
Leistungselektronik	98.4	98.4	94.3	98.5
	(x = 0	Quelle: F	P. Morrison

<u>Beispiel:</u> Reichweite E-Auto im FTP-72 Zyklus

<u>Beispiel:</u> E-Auto im FTP-72 Zyklus – Rekuperation

• Unterschied durch Rekuperation im FTP-72 und FTP-75

	FTP-72	FTP-75
Ladezustand mit Rekuperation	94%	91%
Ladezustand ohne Rekuperation	90,9%	86,5%
Ersparnis	34%	33,3%

<u>Beispiel:</u> E-Auto im FTP-72 Zyklus – Batteriebelastung

<u>Beispiel:</u> E-Auto Betriebszeiten in % im Motorkennfeld

- Im gleichen Maße gerasterte Aufenthaltshäufigkeit des FTP-72 Zyklus
- Am Getriebeeingang anliegende Drehzahl-Drehmoment-Kombination in 10Nm und 10 1/s Abständen zusammengefasst

Beispiel: E-Auto: Häufigkeit der vorkommenden Wirkungsgrade im FTP-72 Zyklus

- Fläche der Punkte = Maß für Aufenthaltshäufigkeit
- Farbverlauf = Maß für Wirkungsgrad

Beispiel: E-Auto Ergebnisse im Sprint

- 7,2 Sekunden von Null auf 100 km/h

Leermasse 900 kg, α = 0

- 15,2 Sekunden von Null auf 150 km/h

Danke für Ihre Aufmerksamkeit !

Literatur (1) zu: Systemauslegung elektrifizierter Triebstränge

Binder, A.: Praxisorientierte Projektierung elektrischer Antriebe (PPEA): Hybrid- und Elektrofahrzeuge, Seminar-Skript, TU Darmstadt, 2009

Bücher:

Miller, J. M.: Propulsion Systems for Hybrid Vehicles. IEE Power and Energy Series 45, The Institution of Electrical Engineers, 2004.

Bischoff, C.: Entwicklung einer Betriebsstrategie für Fahrzeuge mit elektromechanischleistungsverzweigtem Antriebsstrang, Expert-Verlag, Renningen, 2004.

Linden, D.; Reddy, T.B.: Handbook of Batteries, 3rd Edition. McGraw-Hill Handbooks, New York, 2001.

Duvall, M.: Advanced Batteries for Electric-Drive Vehicles – A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Vehicles, and Plug-In Hybrid Electric Vehicles, Technical Report, Electric Power Research Institute, Palo Alto, California, USA, 2004.

Jaksch, H. D.: Batterielexikon. Pflaum-Verlag, München, 1993.

Schröder, D.: Elektrische Antriebe 4 – Leistungselektronische Schaltungen, Springer Verlag Berlin, 2008

Braess, H.; Seiffert, U.: Handbuch Kraftfahrzeugtechnik. Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig/Wiesbaden, 2. Auflage, 2001.

Literatur (2) zu: Systemauslegung elektrifizierter Triebstränge

Wissenschaftliche Schriften:

Göhring, M: Betriebsstrategien für serielle Hybridantriebe. Dissertation, RWTH Aachen, 1997.

Harbolla, B.: Entwicklung eines Bewertungsverfahrens zur Auswahl von Pkw-Hybridantrieben und Realisierung eines seriennahen Antriebskonzepts. Dissertation, RWTH Aachen, 1993.

Neudorfer, H.: Weiterentwicklung von elektrischen Antriebssystemen für Elektro- und Hybridstrassenfahrzeuge, Habilitationsschrift, TU Darmstadt, 2008

Ade, M.: Ein Beitrag zur Modellierung des Antriebsstrangs von Hybrid-Elektrofahrzeugen, Dissertation, TU Darmstadt, Shaker-Verlag, Aachen, 2009

Schmid, M.: Doppelschichtkondensatoren als Kurzzeitspeicher im Hybridfahrzeug. Dissertation, TU München, 2004.

Seiler, J.: Betriebsstrategien für Hybridfahrzeuge mit Verbrennungsmotor unter Berücksichtigung von Kraftstoffverbrauch und Schadstoffemissionen während der Warmlaufphase. Dissertation, TU München, 2000.

Rollwiderstand *F*_{Roll} aller Räder

Momentengleichgewicht um AP:

$$F_{Roll} \cdot d'_R / 2 = z_R F_{G,R} \cdot b_R$$
$$d'_R < d_R$$

$$F_{G} = m \cdot g \qquad F_{N} = F_{G} \cdot \cos \alpha$$
$$d'_{R} \approx d_{R} :$$
$$F_{Roll} = (2b / d_{R}) \cdot F_{N} = f_{R} \cdot F_{N}$$

Rollwiderstandsbeiwert $f_R = f_R(v)$ durch die Verformungsarbeit des Rades (Walkarbeit): hängt von Fahrzeuggeschwindigkeit und Radreifenbeschaffenheit ab